Cyanide
(right click,save link as to download,it is a temp file,please download as soon as possible, you can also use CTRL+S to save the whole html page)
Basic Info
Common Name | Cyanide(F03290) |
2D Structure | |
Description | The cyanide ion consists of a carbon triple bonded to a nitrogen. It readily reacts with hydrogen to form hydrogen cyanide gas, which has a faint almond-like smell. Most people can smell hydrogen cyanide; however, due to an apparent genetic trait, some individuals cannot. Cyanide gas (HCN) can be generated via combustion, including the exhaust of internal combustion engines, tobacco smoke, and especially some plastics derived from acrylonitrile (because of the latter effect, house fires can result in poisonings of the inhabitants). Cyanides are also produced by certain bacteria, fungi, and algae and are found in a number of foods and plants. Small amounts of cyanide can be found in apple seeds, mangoes and bitter almonds. Hydrocyanic acid (a solution of hydrogen cyanide in water) is present in freshly distilled bitter almond oil (2-4%) prior to its removal by precipitation as calcium ferrocyanide to give food quality oil. Hydrogen cyanide and most cyanide salts readily dissolve in water (or other biofluids) and exists in solution as the cyanide ion. Cyanide ions bind to the iron atom of the enzyme cytochrome c oxidase (also known as aa3) in the fourth complex in the mitochondrial membrane in the mitochondria of cells. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted, meaning that the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Because of its respiratory chain toxicity cyanide has been used as a poison many times throughout history. Its most infamous application was the use of hydrogen cyanide by the Nazi regime in Germany for mass murder in some gas chambers during the Holocaust. Hydrogen cyanide (with the historical common name of Prussic acid) is a colorless and highly volatile liquid that boils slightly above room temperature at 26 °C (78.8 °F). Hydrogen cyanide is weakly acidic and partly ionizes in solution to give the cyanide anion, CN-. The salts of hydrogen cyanide are known as cyanides. HCN is a highly valuable precursor to many chemical compounds ranging from polymers to pharmaceuticals. Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. It is a weak acid with a pKa of 9.2. A minor tautomer of HCN is HNC, hydrogen isocyanide. |
FRCD ID | F03290 |
CAS Number | 1957-12-05 |
PubChem CID | 5975 |
Formula | CN- |
IUPAC Name | cyanide |
InChI Key | XFXPMWWXUTWYJX-UHFFFAOYSA-N |
InChI | InChI=1S/CN/c1-2/q-1 |
Canonical SMILES | [C-]#N |
Isomeric SMILES | [C-]#N |
Wikipedia | Cyanide |
Synonyms | cyanide Isocyanide Cyanide anion Cyanide ions Nitrile anion 57-12-5 Cyanide(1-) ion Cyanide(1-) CYANIDE ION Cyanure [French] |
Classifies | Pollutant |
Update Date | Nov 13, 2018 17:07 |
Chemical Taxonomy
Kingdom | Inorganic compounds |
Superclass | Homogeneous non-metal compounds |
Class | Other non-metal organides |
Subclass | Other non-metal nitrides |
Intermediate Tree Nodes | Not available |
Direct Parent | Other non-metal nitrides |
Alternative Parents | |
Molecular Framework | Not available |
Substituents | Other non-metal nitride - Inorganic nitride - Inorganic cyanide |
Description | This compound belongs to the class of inorganic compounds known as other non-metal nitrides. These are inorganic compounds of nitrogen where nitrogen has a formal oxidation state of -3, and the heaviest atom bonded to it belongs to the class of 'other non-metals'. |
Properties
Property Name | Property Value |
---|---|
Molecular Weight | 26.018 |
Hydrogen Bond Donor Count | 0 |
Hydrogen Bond Acceptor Count | 2 |
Rotatable Bond Count | 0 |
Complexity | 10 |
Monoisotopic Mass | 26.003 |
Exact Mass | 26.003 |
XLogP | 0.1 |
Formal Charge | -1 |
Heavy Atom Count | 2 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
References
Title | Journal | Date | Pubmed ID |
---|---|---|---|
Cyanogenesis in Arthropods: From Chemical Warfare to Nuptial Gifts. | Insects | 2018 May 3 | 29751568 |
Konzo: a distinct neurological disease associated with food (cassava) cyanogenic poisoning. | Brain Res Bull | 2018 Jul 5 | 29981837 |
Highly Efficient Electrochemiluminescence of Cyanovinylene-Contained Polymer Dotsin Aqueous Medium and Its Application in Imaging Analysis. | Anal Chem | 2018 Jan 16 | 29265809 |
Nutrients and natural toxic substances in commonly consumed Jerusalem artichoke (Helianthus tuberosus L.) tuber. | Food Chem | 2018 Jan 1 | 28867090 |
Biosynthesis and regulation of cyanogenic glycoside production in forage plants. | Appl Microbiol Biotechnol | 2018 Jan | 29022076 |
Rapid, low temperature synthesis of molecularly imprinted covalent organicframeworks for the highly selective extraction of cyano pyrethroids from plantsamples. | Anal Chim Acta | 2018 Feb 25 | 29291801 |
An improved method for direct estimation of free cyanide in drinking water by IonChromatography-Pulsed Amperometry Detection (IC-PAD) on gold working electrode. | Food Chem | 2018 Feb 1 | 28946253 |
Exploring anaerobic environments for cyanide and cyano-derivatives microbial degradation. | Appl Microbiol Biotechnol | 2018 Feb | 29209795 |
Effects of roasting conditions on physicochemical properties and antioxidant activities in <i>Ginkgo biloba</i> seeds. | Food Sci Biotechnol | 2018 Aug | 30263835 |
Antinutritional factors and hypocholesterolemic effect of wild apricot kernel (Prunus armeniaca L.) as affected by detoxification. | Food Funct | 2018 Apr 25 | 29644368 |
Behavioral toxicity of sodium cyanide following oral ingestion in rats: Dose-dependent onset, severity, survival, and recovery. | Food Chem Toxicol | 2018 Apr | 29454866 |
Dietary cyanogen exposure and early child neurodevelopment: An observational study from the Democratic Republic of Congo. | PLoS One | 2018 | 29664942 |
Suicide attempt with acetonitrile ingestion in a nursing mother. | Clin Toxicol (Phila) | 2017 Sep | 28494173 |
Influence of soy fortification on microbial diversity during cassava fermentationand subsequent physicochemical characteristics of garri. | Food Microbiol | 2017 Sep | 28576365 |
Cyanides in the environment-analysis-problems and challenges. | Environ Sci Pollut Res Int | 2017 Jul | 28512706 |
Highly sensitive detection of glucose: A quantitative approach employing nanorodsassembled plasmonic substrate. | Talanta | 2017 Apr 1 | 28153291 |
<i>Bacillus</i>: A Biological Tool for Crop Improvement through Bio-Molecular Changes in Adverse Environments. | Front Physiol | 2017 | 28932199 |
Bactericidal activity of alpha-bromocinnamaldehyde against persisters in Escherichia coli. | PLoS One | 2017 | 28750057 |
An <i>In vitro</i> Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes. | Front Microbiol | 2017 | 28348550 |
Neurobehavioral and Cardiovascular Effects of Potassium Cyanide Administered Orally to Mice. | Int J Toxicol | 2016 Sep | 27170681 |
Targets
- General Function:
- Nadp binding
- Specific Function:
- Maintains high levels of reduced glutathione in the cytosol.
- Gene Name:
- GSR
- Uniprot ID:
- P00390
- Molecular Weight:
- 56256.565 Da
- Mechanism of Action:
- Cyanide inhibits glutathione reductase.
References
- Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
- General Function:
- Phospholipid-hydroperoxide glutathione peroxidase activity
- Specific Function:
- Protects cells against membrane lipid peroxidation and cell death. Required for normal sperm development and male fertility. Could play a major role in protecting mammals from the toxicity of ingested lipid hydroperoxides. Essential for embryonic development. Protects from radiation and oxidative damage.
- Gene Name:
- GPX4
- Uniprot ID:
- P36969
- Molecular Weight:
- 22174.52 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Peroxidase activity
- Gene Name:
- GPX8
- Uniprot ID:
- Q8TED1
- Molecular Weight:
- 23880.83 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- Subunits I, II and III form the functional core of the enzyme complex.
- Gene Name:
- MT-CO3
- Uniprot ID:
- P00414
- Molecular Weight:
- 29950.6 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX4I1
- Uniprot ID:
- P13073
- Molecular Weight:
- 19576.6 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Zinc ion binding
- Specific Function:
- Reversible hydration of carbon dioxide. May stimulate the sodium/bicarbonate transporter activity of SLC4A4 that acts in pH homeostasis. It is essential for acid overload removal from the retina and retina epithelium, and acid release in the choriocapillaris in the choroid.
- Gene Name:
- CA4
- Uniprot ID:
- P22748
- Molecular Weight:
- 35032.075 Da
References
- Innocenti A, Hilvo M, Parkkila S, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: the membrane-associated isoform XV is highly inhibited by inorganic anions. Bioorg Med Chem Lett. 2009 Feb 15;19(4):1155-8. doi: 10.1016/j.bmcl.2008.12.082. Epub 2008 Dec 25. [19128966 ]
- General Function:
- Receptor binding
- Specific Function:
- Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide. Promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells.
- Gene Name:
- CAT
- Uniprot ID:
- P04040
- Molecular Weight:
- 59755.82 Da
- Mechanism of Action:
- Cyanide inhibits catalase.
References
- Kang YS, Lee DH, Yoon BJ, Oh DC: Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions. J Microbiol. 2006 Apr;44(2):185-91. [16728955 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1.
- Gene Name:
- MT-CO2
- Uniprot ID:
- P00403
- Molecular Weight:
- 25564.73 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Protein homodimerization activity
- Specific Function:
- This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
- Gene Name:
- TYR
- Uniprot ID:
- P14679
- Molecular Weight:
- 60392.69 Da
- Mechanism of Action:
- Cyanide inhibits tyrosinase.
References
- Laufer Z, Beckett RP, Minibayeva FV: Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae. Ann Bot. 2006 Nov;98(5):1035-42. Epub 2006 Sep 1. [16950829 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX4I2
- Uniprot ID:
- Q96KJ9
- Molecular Weight:
- 20010.02 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Transcription factor binding
- Specific Function:
- Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
- Gene Name:
- GPX3
- Uniprot ID:
- P22352
- Molecular Weight:
- 25552.185 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Glutathione peroxidase activity
- Gene Name:
- GPX6
- Uniprot ID:
- P59796
- Molecular Weight:
- 24970.46 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX6A1
- Uniprot ID:
- P12074
- Molecular Weight:
- 12154.8 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- Connects the two COX monomers into the physiological dimeric form.
- Gene Name:
- COX6B1
- Uniprot ID:
- P14854
- Molecular Weight:
- 10192.345 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- Connects the two COX monomers into the physiological dimeric form.
- Gene Name:
- COX6B2
- Uniprot ID:
- Q6YFQ2
- Molecular Weight:
- 10528.905 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX6C
- Uniprot ID:
- P09669
- Molecular Weight:
- 8781.36 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX7A1
- Uniprot ID:
- P24310
- Molecular Weight:
- 9117.44 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Peroxidase activity
- Specific Function:
- It protects esophageal epithelia from hydrogen peroxide-induced oxidative stress. It suppresses acidic bile acid-induced reactive oxigen species (ROS) and protects against oxidative DNA damage and double-strand breaks.
- Gene Name:
- GPX7
- Uniprot ID:
- Q96SL4
- Molecular Weight:
- 20995.88 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX7B2
- Uniprot ID:
- Q8TF08
- Molecular Weight:
- 9077.43 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX7C
- Uniprot ID:
- P15954
- Molecular Weight:
- 7245.45 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX8A
- Uniprot ID:
- P10176
- Molecular Weight:
- 7579.0 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX8C
- Uniprot ID:
- Q7Z4L0
- Molecular Weight:
- 8128.575 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Glutathione peroxidase activity
- Specific Function:
- Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. May constitute a glutathione peroxidase-like protective system against peroxide damage in sperm membrane lipids.
- Gene Name:
- GPX5
- Uniprot ID:
- O75715
- Molecular Weight:
- 25202.14 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Protect the extracellular space from toxic effect of reactive oxygen intermediates by converting superoxide radicals into hydrogen peroxide and oxygen.
- Gene Name:
- SOD3
- Uniprot ID:
- P08294
- Molecular Weight:
- 25850.675 Da
- Mechanism of Action:
- Cyanide inhibits superoxide dismutase [Cu-Zn].
References
- Lee WG, Hwang JH, Na BK, Cho JH, Lee HW, Cho SH, Kong Y, Song CY, Kim TS: Functional expression of a recombinant copper/zinc superoxide dismutase of filarial nematode, Brugia malayi. J Parasitol. 2005 Feb;91(1):205-8. [15856906 ]
- General Function:
- Sh3 domain binding
- Specific Function:
- Protects the hemoglobin in erythrocytes from oxidative breakdown.
- Gene Name:
- GPX1
- Uniprot ID:
- P07203
- Molecular Weight:
- 22087.94 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Glutathione peroxidase activity
- Specific Function:
- Could play a major role in protecting mammals from the toxicity of ingested organic hydroperoxides. Tert-butyl hydroperoxide, cumene hydroperoxide and linoleic acid hydroperoxide but not phosphatidycholine hydroperoxide, can act as acceptors.
- Gene Name:
- GPX2
- Uniprot ID:
- P18283
- Molecular Weight:
- 21953.835 Da
- Mechanism of Action:
- Cyanide inhibits glutathione peroxidases.
References
- Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
- General Function:
- Ubiquinone binding
- Specific Function:
- Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
- Gene Name:
- SDHD
- Uniprot ID:
- O14521
- Molecular Weight:
- 17042.82 Da
- Mechanism of Action:
- Cyanide inhibits succinate dehydrogenases.
References
- Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
- General Function:
- Succinate dehydrogenase activity
- Specific Function:
- Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
- Gene Name:
- SDHA
- Uniprot ID:
- P31040
- Molecular Weight:
- 72690.975 Da
- Mechanism of Action:
- Cyanide inhibits succinate dehydrogenases.
References
- Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
- General Function:
- Ubiquinone binding
- Specific Function:
- Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
- Gene Name:
- SDHB
- Uniprot ID:
- P21912
- Molecular Weight:
- 31629.365 Da
- Mechanism of Action:
- Cyanide inhibits succinate dehydrogenases.
References
- Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
- General Function:
- Succinate dehydrogenase activity
- Specific Function:
- Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
- Gene Name:
- SDHC
- Uniprot ID:
- Q99643
- Molecular Weight:
- 18610.03 Da
- Mechanism of Action:
- Cyanide inhibits succinate dehydrogenases.
References
- Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Destroys radicals which are normally produced within the cells and which are toxic to biological systems.
- Gene Name:
- SOD1
- Uniprot ID:
- P00441
- Molecular Weight:
- 15935.685 Da
- Mechanism of Action:
- Cyanide inhibits superoxide dismutase [Cu-Zn].
References
- Lee WG, Hwang JH, Na BK, Cho JH, Lee HW, Cho SH, Kong Y, Song CY, Kim TS: Functional expression of a recombinant copper/zinc superoxide dismutase of filarial nematode, Brugia malayi. J Parasitol. 2005 Feb;91(1):205-8. [15856906 ]
- General Function:
- Metal ion binding
- Gene Name:
- ALPPL2
- Uniprot ID:
- P10696
- Molecular Weight:
- 57376.515 Da
- Mechanism of Action:
- Cyanide inhibits alkaline phosphatases.
References
- Gerbitz KD: Human alkaline phosphatases. II. Metalloenzyme properties of the enzyme from human liver. Hoppe Seylers Z Physiol Chem. 1977 Nov;358(11):1491-7. [924371 ]
- General Function:
- Pyrophosphatase activity
- Specific Function:
- This isozyme may play a role in skeletal mineralization.
- Gene Name:
- ALPL
- Uniprot ID:
- P05186
- Molecular Weight:
- 57304.435 Da
- Mechanism of Action:
- Cyanide inhibits alkaline phosphatases.
References
- Gerbitz KD: Human alkaline phosphatases. II. Metalloenzyme properties of the enzyme from human liver. Hoppe Seylers Z Physiol Chem. 1977 Nov;358(11):1491-7. [924371 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
- Gene Name:
- CA1
- Uniprot ID:
- P00915
- Molecular Weight:
- 28870.0 Da
References
- Innocenti A, Hilvo M, Parkkila S, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: the membrane-associated isoform XV is highly inhibited by inorganic anions. Bioorg Med Chem Lett. 2009 Feb 15;19(4):1155-8. doi: 10.1016/j.bmcl.2008.12.082. Epub 2008 Dec 25. [19128966 ]
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX7A2
- Uniprot ID:
- P14406
- Molecular Weight:
- 9395.89 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Zinc ion binding
- Specific Function:
- Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
- Gene Name:
- CA2
- Uniprot ID:
- P00918
- Molecular Weight:
- 29245.895 Da
References
- Innocenti A, Hilvo M, Parkkila S, Scozzafava A, Supuran CT: Carbonic anhydrase inhibitors: the membrane-associated isoform XV is highly inhibited by inorganic anions. Bioorg Med Chem Lett. 2009 Feb 15;19(4):1155-8. doi: 10.1016/j.bmcl.2008.12.082. Epub 2008 Dec 25. [19128966 ]
- General Function:
- Iron ion binding
- Specific Function:
- Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
- Gene Name:
- MT-CO1
- Uniprot ID:
- P00395
- Molecular Weight:
- 57040.91 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Metal ion binding
- Specific Function:
- This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX5A
- Uniprot ID:
- P20674
- Molecular Weight:
- 16761.985 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Metal ion binding
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX5B
- Uniprot ID:
- P10606
- Molecular Weight:
- 13695.57 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
- Gene Name:
- COX6A2
- Uniprot ID:
- Q02221
- Molecular Weight:
- 10815.32 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Specific Function:
- This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. Plays a role in proper central nervous system (CNS) development in vertebrates.
- Gene Name:
- COX7B
- Uniprot ID:
- P24311
- Molecular Weight:
- 9160.485 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
- General Function:
- Cytochrome-c oxidase activity
- Gene Name:
- COX7A2P2
- Uniprot ID:
- O60397
- Molecular Weight:
- 11840.715 Da
- Mechanism of Action:
- Cyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected.
References
- Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning