Toxaphene
(right click,save link as to download,it is a temp file,please download as soon as possible, you can also use CTRL+S to save the whole html page)
Basic Info
Common Name | Toxaphene(F03291) |
2D Structure | |
Description | Toxaphene is an insecticide mixture of compounds. It was once widenly used, but it is now banned in most areas due to its toxicity and tendency to bioaccumulate in the environment. (L107) The structure displayed is a generic structure of toxaphene components. |
FRCD ID | F03291 |
CAS Number | 8001-35-2 |
PubChem CID | 5284469 |
Formula | C10H8Cl8 |
IUPAC Name | 1,4,5,6,7,7-hexachloro-3,3-bis(chloromethyl)-2-methylidenebicyclo[2.2.1]heptane |
InChI Key | OEJNXTAZZBRGDN-UHFFFAOYSA-N |
InChI | InChI=1S/C10H8Cl8/c1-4-7(2-11,3-12)9(16)6(14)5(13)8(4,15)10(9,17)18/h5-6H,1-3H2 |
Canonical SMILES | C=C1C(C2(C(C(C1(C2(Cl)Cl)Cl)Cl)Cl)Cl)(CCl)CCl |
Isomeric SMILES | C=C1C(C2(C(C(C1(C2(Cl)Cl)Cl)Cl)Cl)Cl)(CCl)CCl |
Synonyms | toxaphene 8001-35-2 NCGC00091881-01 DSSTox_CID_1368 DSSTox_GSID_21368 CAS-8001-35-2 D0X6OV AC1NR4I7 GTPL2830 DSSTox_RID_76114 |
Classifies | Pollutant Pesticide |
Update Date | Nov 13, 2018 17:07 |
Chemical Taxonomy
Kingdom | Organic compounds |
Superclass | Lipids and lipid-like molecules |
Class | Prenol lipids |
Subclass | Monoterpenoids |
Intermediate Tree Nodes | Not available |
Direct Parent | Bicyclic monoterpenoids |
Alternative Parents | |
Molecular Framework | Aliphatic homopolycyclic compounds |
Substituents | Bicyclic monoterpenoid - Hydrocarbon derivative - Organochloride - Organohalogen compound - Alkyl halide - Alkyl chloride - Aliphatic homopolycyclic compound |
Description | This compound belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. |
Properties
Property Name | Property Value |
---|---|
Molecular Weight | 411.774 |
Hydrogen Bond Donor Count | 0 |
Hydrogen Bond Acceptor Count | 0 |
Rotatable Bond Count | 2 |
Complexity | 403 |
Monoisotopic Mass | 407.813 |
Exact Mass | 411.808 |
XLogP | 4.7 |
Formal Charge | 0 |
Heavy Atom Count | 18 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 4 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
ADMET
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9713 |
Human Intestinal Absorption | HIA+ | 0.9766 |
Caco-2 Permeability | Caco2+ | 0.6243 |
P-glycoprotein Substrate | Non-substrate | 0.7276 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.8292 |
Non-inhibitor | 0.9737 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.6952 |
Distribution | ||
Subcellular localization | Lysosome | 0.5705 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.9057 |
CYP450 2D6 Substrate | Non-substrate | 0.8577 |
CYP450 3A4 Substrate | Non-substrate | 0.5787 |
CYP450 1A2 Inhibitor | Non-inhibitor | 0.5475 |
CYP450 2C9 Inhibitor | Non-inhibitor | 0.6540 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.9151 |
CYP450 2C19 Inhibitor | Inhibitor | 0.5408 |
CYP450 3A4 Inhibitor | Inhibitor | 0.7959 |
CYP Inhibitory Promiscuity | High CYP Inhibitory Promiscuity | 0.5535 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.8415 |
Non-inhibitor | 0.9211 | |
AMES Toxicity | Non AMES toxic | 0.7719 |
Carcinogens | Non-carcinogens | 0.5577 |
Fish Toxicity | High FHMT | 0.9568 |
Tetrahymena Pyriformis Toxicity | High TPT | 0.9949 |
Honey Bee Toxicity | High HBT | 0.8934 |
Biodegradation | Not ready biodegradable | 0.9872 |
Acute Oral Toxicity | III | 0.4463 |
Carcinogenicity (Three-class) | Non-required | 0.6152 |
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -5.2051 | LogS |
Caco-2 Permeability | 1.7019 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 2.5232 | LD50, mol/kg |
Fish Toxicity | -0.2258 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | 1.0026 | pIGC50, ug/L |
References
Title | Journal | Date | Pubmed ID |
---|---|---|---|
Chlorinated insecticides (toxaphene and endrin) affect oxytocin, testosterone,oestradiol and prostaglandin secretion from ovarian and uterine cells as well as myometrial contractions in cow in vitro. | Chemosphere | 2018 May | 29425943 |
Thorough study of persistent organic pollutants and halogenated natural products in sperm whale blubber through preparative sample cleanup followed byfractionation with countercurrent chromatography. | J Chromatogr A | 2018 Aug 31 | 29937123 |
Lower levels of Persistent Organic Pollutants, metals and the marine omega3-fatty acid DHA in farmed compared to wild Atlantic salmon (Salmo salar). | Environ Res | 2017 May | 28189073 |
Analysis and Characterization of Polychlorinated Hydroxybornanes as Metabolitesof Toxaphene Using a Polar Bear Model. | Environ Sci Technol | 2017 Aug 1 | 28686017 |
Are Fish Consumption Advisories for the Great Lakes Adequately Protective against Chemical Mixtures? | Environ Health Perspect | 2017 Apr | 27697747 |
Toxaphene levels in retail food from the Pearl River Delta area of South Chinaand an assessment of dietary intake. | Chemosphere | 2016 Jun | 26991380 |
Local impacts, global sources: The governance of boundary-crossing chemicals. | Hist Sci | 2016 Dec | 28027704 |
Dietary exposure to organochlorine pesticide residues of the Hong Kong adultpopulation from a total diet study. | Food Addit Contam Part A Chem Anal Control Expo Risk Assess | 2015 | 25686031 |
Plasma concentrations of persistent organic pollutants in the Cree of northernQuebec, Canada: results from the multi-community environment-and-health study. | Sci Total Environ | 2014 Feb 1 | 24189104 |
[Levels for toxaphene in three categories of animal originated food in PearlRiver Delta area]. | Zhonghua Yu Fang Yi Xue Za Zhi | 2014 Dec | 25619218 |
Risk ranking priority of carcinogenic and/or genotoxic environmental contaminantsin food in Belgium. | Food Addit Contam Part A Chem Anal Control Expo Risk Assess | 2014 | 24471940 |
Scavenging amphipods: sentinels for penetration of mercury and persistent organicchemicals into food webs of the deep Arctic Ocean. | Environ Sci Technol | 2013 Jun 4 | 23627492 |
Biotic interactions in temporal trends (1992-2010) of organochlorine contaminantsin the aquatic food web of Lake Laberge, Yukon Territory. | Sci Total Environ | 2013 Jan 15 | 23178892 |
Toxicokinetic model assessment on the dechlorination of dietary toxaphene CHB-62 into CHB-44 in Atlantic salmon (Salmo salar L.). | Food Addit Contam Part A Chem Anal Control Expo Risk Assess | 2013 | 23859873 |
Factors influencing legacy pollutant accumulation in alpine osprey: biology,topography, or melting glaciers? | Environ Sci Technol | 2012 Sep 4 | 22876912 |
Dechlorination of the dietary nona-chlorinated toxaphene congeners 62 and 50 intothe octa-chlorinated toxaphene congeners 44 and 40 in zebrafish (Danio rerio) andAtlantic salmon (Salmo salar). | Aquat Toxicol | 2012 May 15 | 22366425 |
Toxicological risks to humans of toxaphene residues in fish. | Integr Environ Assess Manag | 2012 Jul | 22162326 |
Characteristic molecular signature for early detection and prediction of persistent organic pollutants in rat liver. | Environ Sci Technol | 2012 Dec 4 | 23153324 |
Historical trends in human dietary intakes of endosulfan and toxaphene in China, Korea and Japan. | Chemosphere | 2011 May | 21470655 |
Carry-over of dietary organochlorine pesticides, PCDD/Fs, PCBs, and brominatedflame retardants to Atlantic salmon (Salmo salar L.) fillets. | Chemosphere | 2011 Mar | 21284993 |
Targets
- General Function:
- Gaba-a receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRD
- Uniprot ID:
- O14764
- Molecular Weight:
- 50707.835 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Signal transducer activity
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
- Gene Name:
- ATP2C1
- Uniprot ID:
- P98194
- Molecular Weight:
- 100576.42 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
- Gene Name:
- ESR2
- Uniprot ID:
- Q92731
- Molecular Weight:
- 59215.765 Da
- Mechanism of Action:
- Causes endocrine disruption in humans by binding to and inhibiting the estrogen receptor.
References
- Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R: Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006 Aug 15;79(12):1160-9. Epub 2006 Mar 27. [16626760 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Binds to an ERR-alpha response element (ERRE) containing a single consensus half-site, 5'-TNAAGGTCA-3'. Can bind to the medium-chain acyl coenzyme A dehydrogenase (MCAD) response element NRRE-1 and may act as an important regulator of MCAD promoter. Binds to the C1 region of the lactoferrin gene promoter. Requires dimerization and the coactivator, PGC-1A, for full activity. The ERRalpha/PGC1alpha complex is a regulator of energy metabolism. Induces the expression of PERM1 in the skeletal muscle.
- Gene Name:
- ESRRA
- Uniprot ID:
- P11474
- Molecular Weight:
- 45509.11 Da
References
- Chen S, Zhou D, Yang C, Okubo T, Kinoshita Y, Yu B, Kao YC, Itoh T: Modulation of aromatase expression in human breast tissue. J Steroid Biochem Mol Biol. 2001 Dec;79(1-5):35-40. [11850205 ]
- General Function:
- Manganese ion binding
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP (PubMed:12609998, PubMed:15659711, PubMed:24616449, PubMed:25040695, PubMed:24567411). May function as sensor that mediates responses to changes in cellular bicarbonate and CO(2) levels (PubMed:15659711, PubMed:17591988). Has a critical role in mammalian spermatogenesis by producing the cAMP which regulates cAMP-responsive nuclear factors indispensable for sperm maturation in the epididymis. Induces capacitation, the maturational process that sperm undergo prior to fertilization (By similarity). Involved in ciliary beat regulation (PubMed:17591988).
- Gene Name:
- ADCY10
- Uniprot ID:
- Q96PN6
- Molecular Weight:
- 187147.545 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Protein heterodimerization activity
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642). Down-stream signaling cascades mediate changes in gene expression patterns and lead to increased IL6 production. Functions in signaling cascades downstream of the muscarinic acetylcholine receptors (By similarity).
- Gene Name:
- ADCY2
- Uniprot ID:
- Q08462
- Molecular Weight:
- 123602.25 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Metal ion binding
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Participates in signaling cascades triggered by odorant receptors via its function in cAMP biosynthesis. Required for the perception of odorants. Required for normal sperm motility and normal male fertility. Plays a role in regulating insulin levels and body fat accumulation in response to a high fat diet.
- Gene Name:
- ADCY3
- Uniprot ID:
- O60266
- Molecular Weight:
- 128958.905 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Metal ion binding
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling.
- Gene Name:
- ADCY4
- Uniprot ID:
- Q8NFM4
- Molecular Weight:
- 119792.94 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Protein heterodimerization activity
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling (PubMed:15385642, PubMed:26206488, PubMed:24700542). Mediates signaling downstream of ADRB1 (PubMed:24700542). Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion (PubMed:24740569).
- Gene Name:
- ADCY5
- Uniprot ID:
- O95622
- Molecular Weight:
- 138906.37 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Metal ion binding
- Specific Function:
- This is a membrane-bound, calcium-inhibitable adenylyl cyclase.
- Gene Name:
- ADCY7
- Uniprot ID:
- P51828
- Molecular Weight:
- 120307.175 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Metal ion binding
- Specific Function:
- This is a membrane-bound, calcium-stimulable adenylyl cyclase. May be involved in learning, in memory and in drug dependence (By similarity).
- Gene Name:
- ADCY8
- Uniprot ID:
- P40145
- Molecular Weight:
- 140120.79 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.
- Gene Name:
- AR
- Uniprot ID:
- P10275
- Molecular Weight:
- 98987.9 Da
References
- Schrader TJ, Cooke GM: Examination of selected food additives and organochlorine food contaminants for androgenic activity in vitro. Toxicol Sci. 2000 Feb;53(2):278-88. [10696776 ]
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
- Gene Name:
- ATP2C2
- Uniprot ID:
- O75185
- Molecular Weight:
- 103186.475 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
- Gene Name:
- GABRA1
- Uniprot ID:
- P14867
- Molecular Weight:
- 51801.395 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRA2
- Uniprot ID:
- P47869
- Molecular Weight:
- 51325.85 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRA3
- Uniprot ID:
- P34903
- Molecular Weight:
- 55164.055 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRA4
- Uniprot ID:
- P48169
- Molecular Weight:
- 61622.645 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Transporter activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRA5
- Uniprot ID:
- P31644
- Molecular Weight:
- 52145.645 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRA6
- Uniprot ID:
- Q16445
- Molecular Weight:
- 51023.69 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
- Gene Name:
- GABRB2
- Uniprot ID:
- P47870
- Molecular Weight:
- 59149.895 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Gaba-gated chloride ion channel activity
- Specific Function:
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
- Gene Name:
- GABRB3
- Uniprot ID:
- P28472
- Molecular Weight:
- 54115.04 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRE
- Uniprot ID:
- P78334
- Molecular Weight:
- 57971.175 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRG1
- Uniprot ID:
- Q8N1C3
- Molecular Weight:
- 53594.49 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
- Gene Name:
- GABRG2
- Uniprot ID:
- P18507
- Molecular Weight:
- 54161.78 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Inhibitory extracellular ligand-gated ion channel activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRG3
- Uniprot ID:
- Q99928
- Molecular Weight:
- 54288.16 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Gaba-a receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
- Gene Name:
- GABRP
- Uniprot ID:
- O00591
- Molecular Weight:
- 50639.735 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Gaba-a receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
- Gene Name:
- GABRR2
- Uniprot ID:
- P28476
- Molecular Weight:
- 54150.41 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Gaba-a receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRR3
- Uniprot ID:
- A8MPY1
- Molecular Weight:
- 54271.1 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Transmembrane signaling receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
- Gene Name:
- GABRQ
- Uniprot ID:
- Q9UN88
- Molecular Weight:
- 72020.875 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Pdz domain binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
- Gene Name:
- ATP2B1
- Uniprot ID:
- P20020
- Molecular Weight:
- 138754.045 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Protein c-terminus binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
- Gene Name:
- ATP2B2
- Uniprot ID:
- Q01814
- Molecular Weight:
- 136875.18 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Pdz domain binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
- Gene Name:
- ATP2B3
- Uniprot ID:
- Q16720
- Molecular Weight:
- 134196.025 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Zinc ion binding
- Specific Function:
- The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Progesterone receptor isoform B (PRB) is involved activation of c-SRC/MAPK signaling on hormone stimulation.Isoform A: inactive in stimulating c-Src/MAPK signaling on hormone stimulation.Isoform 4: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone.
- Gene Name:
- PGR
- Uniprot ID:
- P06401
- Molecular Weight:
- 98979.96 Da
References
- Scippo ML, Argiris C, Van De Weerdt C, Muller M, Willemsen P, Martial J, Maghuin-Rogister G: Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal Bioanal Chem. 2004 Feb;378(3):664-9. Epub 2003 Oct 25. [14579009 ]
- General Function:
- S100 protein binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
- Gene Name:
- ATP2A2
- Uniprot ID:
- P16615
- Molecular Weight:
- 114755.765 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A3
- Uniprot ID:
- Q93084
- Molecular Weight:
- 113976.23 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Steroid hormone binding
- Specific Function:
- This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
- Gene Name:
- ATP1A1
- Uniprot ID:
- P05023
- Molecular Weight:
- 112895.01 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Steroid hormone binding
- Specific Function:
- This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients.
- Gene Name:
- ATP1A2
- Uniprot ID:
- P50993
- Molecular Weight:
- 112264.385 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Transporter activity
- Specific Function:
- May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase.
- Gene Name:
- FXYD2
- Uniprot ID:
- P54710
- Molecular Weight:
- 7283.265 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Steroid hormone binding
- Specific Function:
- This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
- Gene Name:
- ATP1A3
- Uniprot ID:
- P13637
- Molecular Weight:
- 111747.51 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Sodium:potassium-exchanging atpase activity
- Specific Function:
- This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.Involved in cell adhesion and establishing epithelial cell polarity.
- Gene Name:
- ATP1B1
- Uniprot ID:
- P05026
- Molecular Weight:
- 35061.07 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Sodium:potassium-exchanging atpase activity
- Specific Function:
- This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known.
- Gene Name:
- ATP1B3
- Uniprot ID:
- P54709
- Molecular Weight:
- 31512.34 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Gaba-a receptor activity
- Specific Function:
- GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
- Gene Name:
- GABRR1
- Uniprot ID:
- P24046
- Molecular Weight:
- 55882.91 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Serine hydrolase activity
- Specific Function:
- Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
- Gene Name:
- ACHE
- Uniprot ID:
- P22303
- Molecular Weight:
- 67795.525 Da
- Mechanism of Action:
- Toxapehene inhibits acetylcholinesterase, which affects the sensitivity of the nervous system.
References
- Chandra J, Durairaj G: Effect of toxaphene toxicity on enzyme activity & residue levels in vital organs of guineapig. Indian J Med Res. 1993 Aug;98:193-8. [8262581 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
- Gene Name:
- ESR1
- Uniprot ID:
- P03372
- Molecular Weight:
- 66215.45 Da
- Mechanism of Action:
- Causes endocrine disruption in humans by binding to and inhibiting the estrogen receptor.
References
- Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R: Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006 Aug 15;79(12):1160-9. Epub 2006 Mar 27. [16626760 ]
- General Function:
- Metal ion binding
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Mediates responses to increased cellular Ca(2+)/calmodulin levels (By similarity). May be involved in regulatory processes in the central nervous system. May play a role in memory and learning. Plays a role in the regulation of the circadian rhythm of daytime contrast sensitivity probably by modulating the rhythmic synthesis of cyclic AMP in the retina (By similarity).
- Gene Name:
- ADCY1
- Uniprot ID:
- Q08828
- Molecular Weight:
- 123438.85 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Protein kinase binding
- Specific Function:
- Catalyzes the formation of the signaling molecule cAMP downstream of G protein-coupled receptors (PubMed:17916776, PubMed:17110384). Functions in signaling cascades downstream of beta-adrenergic receptors in the heart and in vascular smooth muscle cells (PubMed:17916776). Functions in signaling cascades downstream of the vasopressin receptor in the kidney and has a role in renal water reabsorption. Functions in signaling cascades downstream of PTH1R and plays a role in regulating renal phosphate excretion. Functions in signaling cascades downstream of the VIP and SCT receptors in pancreas and contributes to the regulation of pancreatic amylase and fluid secretion (By similarity). Signaling mediates cAMP-dependent activation of protein kinase PKA. This promotes increased phosphorylation of various proteins, including AKT. Plays a role in regulating cardiac sarcoplasmic reticulum Ca(2+) uptake and storage, and is required for normal heart ventricular contractibility. May contribute to normal heart function (By similarity). Mediates vasodilatation after activation of beta-adrenergic receptors by isoproterenol (PubMed:17916776). Contributes to bone cell responses to mechanical stimuli (By similarity).
- Gene Name:
- ADCY6
- Uniprot ID:
- O43306
- Molecular Weight:
- 130614.095 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Metal ion binding
- Specific Function:
- Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors (PubMed:9628827, PubMed:12972952, PubMed:15879435, PubMed:10987815). Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors (PubMed:9628827).
- Gene Name:
- ADCY9
- Uniprot ID:
- O60503
- Molecular Weight:
- 150699.36 Da
- Mechanism of Action:
- Toxaphene inhibits adenylate cyclase, which affects the sensitivity of the nervous system by altering calcium transport across cell membranes.
References
- Kodavanti PR, Mehrotra BD, Chetty SC, Desaiah D: Inhibition of calmodulin activated adenylate cyclase in rat brain by selected insecticides. Neurotoxicology. 1989 Summer;10(2):219-28. [2616064 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
- Gene Name:
- GABRB1
- Uniprot ID:
- P18505
- Molecular Weight:
- 54234.085 Da
- Mechanism of Action:
- This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Scaffold protein binding
- Specific Function:
- Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity).
- Gene Name:
- ATP2B4
- Uniprot ID:
- P23634
- Molecular Weight:
- 137919.03 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Protein homodimerization activity
- Specific Function:
- Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A1
- Uniprot ID:
- O14983
- Molecular Weight:
- 110251.36 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Sodium:potassium-exchanging atpase activity
- Specific Function:
- This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility.
- Gene Name:
- ATP1A4
- Uniprot ID:
- Q13733
- Molecular Weight:
- 114165.44 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Sodium:potassium-exchanging atpase activity
- Specific Function:
- This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known.Mediates cell adhesion of neurons and astrocytes, and promotes neurite outgrowth.
- Gene Name:
- ATP1B2
- Uniprot ID:
- P14415
- Molecular Weight:
- 33366.925 Da
- Mechanism of Action:
- This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.