Basic Info

Common Name3,3'-Dichlorobenzidine(F03299)
2D Structure
Description

3,3'-Dichlorobenzidine is a manufactured chemical used in pigments for printing inks, textiles, plastics and enamels, paint, leather, and rubber. (L124)

FRCD IDF03299
CAS Number91-94-1
PubChem CID7070
FormulaC12H10Cl2N2
IUPAC Name

4-(4-amino-3-chlorophenyl)-2-chloroaniline

InChI Key

HUWXDEQWWKGHRV-UHFFFAOYSA-N

InChI

InChI=1S/C12H10Cl2N2/c13-9-5-7(1-3-11(9)15)8-2-4-12(16)10(14)6-8/h1-6H,15-16H2

Canonical SMILES

C1=CC(=C(C=C1C2=CC(=C(C=C2)N)Cl)Cl)N

Isomeric SMILES

C1=CC(=C(C=C1C2=CC(=C(C=C2)N)Cl)Cl)N

Synonyms
        
            3,3'-DICHLOROBENZIDINE
        
            91-94-1
        
            Dichlorobenzidine base
        
            3,3-Dichlorobenzidine
        
            o,o'-Dichlorobenzidine
        
            3,3'-Dichlorobiphenyl-4,4'-diamine
        
            3,3'-Dichlorbenzidin
        
            3,3'-Dichlorobenzidina
        
            Curithane C126
        
            RCRA waste number U073
        
Classifies
                

                  
                    Pollutant
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassBenzenoids
ClassBenzene and substituted derivatives
SubclassBiphenyls and derivatives
Intermediate Tree NodesBenzidines
Direct Parent3,3'-disubstituted benzidines
Alternative Parents
Molecular FrameworkAromatic homomonocyclic compounds
Substituents3,3'-disubstituted benzidine - Polychlorinated biphenyl - Chlorinated biphenyl - Aniline or substituted anilines - Halobenzene - Chlorobenzene - Aryl halide - Aryl chloride - Amine - Primary amine - Organopnictogen compound - Organonitrogen compound - Organochloride - Organohalogen compound - Organic nitrogen compound - Hydrocarbon derivative - Aromatic homomonocyclic compound
DescriptionThis compound belongs to the class of organic compounds known as 3,3'-disubstituted benzidines. These are organic compounds containing a benzidine skeleton, which is substituted only at the 3- and 3'-positions.

Properties

Property NameProperty Value
Molecular Weight253.126
Hydrogen Bond Donor Count2
Hydrogen Bond Acceptor Count2
Rotatable Bond Count1
Complexity213
Monoisotopic Mass252.022
Exact Mass252.022
XLogP3.5
Formal Charge0
Heavy Atom Count16
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

ADMET

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9729
Human Intestinal AbsorptionHIA+0.9861
Caco-2 PermeabilityCaco2+0.8075
P-glycoprotein SubstrateNon-substrate0.8110
P-glycoprotein InhibitorNon-inhibitor0.8434
Non-inhibitor0.9102
Renal Organic Cation TransporterNon-inhibitor0.8467
Distribution
Subcellular localizationMitochondria0.4016
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8345
CYP450 2D6 SubstrateNon-substrate0.8849
CYP450 3A4 SubstrateNon-substrate0.7011
CYP450 1A2 InhibitorInhibitor0.9182
CYP450 2C9 InhibitorInhibitor0.8086
CYP450 2D6 InhibitorNon-inhibitor0.8903
CYP450 2C19 InhibitorInhibitor0.7192
CYP450 3A4 InhibitorNon-inhibitor0.6934
CYP Inhibitory PromiscuityHigh CYP Inhibitory Promiscuity0.9255
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9806
Non-inhibitor0.6974
AMES ToxicityAMES toxic0.9320
CarcinogensCarcinogens 0.6879
Fish ToxicityHigh FHMT0.9827
Tetrahymena Pyriformis ToxicityHigh TPT0.9977
Honey Bee ToxicityLow HBT0.8305
BiodegradationNot ready biodegradable0.9972
Acute Oral ToxicityIII0.6070
Carcinogenicity (Three-class)Non-required0.7056

Model Value Unit
Absorption
Aqueous solubility-4.8577LogS
Caco-2 Permeability1.7188LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.2581LD50, mol/kg
Fish Toxicity0.3797pLC50, mg/L
Tetrahymena Pyriformis Toxicity1.8112pIGC50, ug/L

Targets

General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBD
Uniprot ID:
P02042
Molecular Weight:
16055.41 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Oxygen transporter activity
Specific Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Gene Name:
HBG1
Uniprot ID:
P69891
Molecular Weight:
16140.37 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Specific Function:
Heme binding
Gene Name:
HBG2
Uniprot ID:
P69892
Molecular Weight:
16126.35 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Oxygen transporter activity
Gene Name:
HBM
Uniprot ID:
Q6B0K9
Molecular Weight:
15617.97 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Oxygen transporter activity
Gene Name:
HBQ1
Uniprot ID:
P09105
Molecular Weight:
15507.575 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.Spinorphin: functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation.
Gene Name:
HBB
Uniprot ID:
P68871
Molecular Weight:
15998.34 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
Gene Name:
ESR2
Uniprot ID:
Q92731
Molecular Weight:
59215.765 Da
Mechanism of Action:
Causes endocrine disruption in humans by binding to and inhibiting the estrogen receptor.
References
  1. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M: N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006 Apr;69(8):1450-4. [16531984 ]
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBA1
Uniprot ID:
P69905
Molecular Weight:
15257.405 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Transcription regulatory region dna binding
Specific Function:
Ligand-activated transcriptional activator. Binds to the XRE promoter region of genes it activates. Activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons. Involved in cell-cycle regulation. Likely to play an important role in the development and maturation of many tissues. Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1. Inhibits PER1 by repressing the CLOCK-ARNTL/BMAL1 heterodimer mediated transcriptional activation of PER1.
Gene Name:
AHR
Uniprot ID:
P35869
Molecular Weight:
96146.705 Da
Mechanism of Action:
3,3’-Dichlorobenzidine acts on the aryl hydrocarbon receptor to induce the activity of cytochrome p-450 enzymes, which metabolize 3,3’-dichlorobenzidine, along with other polyhalogenated aromatics, into their toxic intermediates.
References
  1. Cikryt P, Josephy PD: Binding of chlorinated benzidines to the rat hepatic aromatic hydrocarbon receptor. Chem Biol Interact. 1989;72(1-2):57-64. [2555073 ]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transmembrane signaling receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRQ
Uniprot ID:
Q9UN88
Molecular Weight:
72020.875 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B1
Uniprot ID:
P20020
Molecular Weight:
138754.045 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein c-terminus binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B2
Uniprot ID:
Q01814
Molecular Weight:
136875.18 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B3
Uniprot ID:
Q16720
Molecular Weight:
134196.025 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
P05023
Molecular Weight:
112895.01 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A2
Uniprot ID:
P50993
Molecular Weight:
112264.385 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A3
Uniprot ID:
P13637
Molecular Weight:
111747.51 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.Involved in cell adhesion and establishing epithelial cell polarity.
Gene Name:
ATP1B1
Uniprot ID:
P05026
Molecular Weight:
35061.07 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known.
Gene Name:
ATP1B3
Uniprot ID:
P54709
Molecular Weight:
31512.34 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase.
Gene Name:
FXYD2
Uniprot ID:
P54710
Molecular Weight:
7283.265 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Oxygen transporter activity
Specific Function:
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Gene Name:
HBE1
Uniprot ID:
P02100
Molecular Weight:
16202.71 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
Mechanism of Action:
Causes endocrine disruption in humans by binding to and inhibiting the estrogen receptor.
References
  1. Taccone-Gallucci M, Manca-di-Villahermosa S, Battistini L, Stuffler RG, Tedesco M, Maccarrone M: N-3 PUFAs reduce oxidative stress in ESRD patients on maintenance HD by inhibiting 5-lipoxygenase activity. Kidney Int. 2006 Apr;69(8):1450-4. [16531984 ]
General Function:
Oxygen transporter activity
Specific Function:
The zeta chain is an alpha-type chain of mammalian embryonic hemoglobin.
Gene Name:
HBZ
Uniprot ID:
P02008
Molecular Weight:
15636.845 Da
Mechanism of Action:
3,3’-Dichlorobenzidine`s mechanism of toxicity derivies mainly from the adduction of DNA by its metabolites. The formation of nitroso derivatives during metabolism, yielding a sulfinic acid amide with hemoglobin in erythrocytes, is suggested to be a mechanism for this adduct formation.
References
  1. Sabbioni G, Schutze D: Hemoglobin binding of bicyclic aromatic amines. Chem Res Toxicol. 1998 May;11(5):471-83. [9585478 ]
General Function:
Zinc ion binding
Specific Function:
Steroid hormone receptors are ligand-activated transcription factors that regulate eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Transcription factor activity is modulated by bound coactivator and corepressor proteins. Transcription activation is down-regulated by NR0B2. Activated, but not phosphorylated, by HIPK3 and ZIPK/DAPK3.
Gene Name:
AR
Uniprot ID:
P10275
Molecular Weight:
98987.9 Da
References
  1. Araki N, Ohno K, Nakai M, Takeyoshi M, Iida M: Screening for androgen receptor activities in 253 industrial chemicals by in vitro reporter gene assays using AR-EcoScreen cells. Toxicol In Vitro. 2005 Sep;19(6):831-42. [15950433 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
Mechanism of Action:
This organochloride antagonizes the action of the neurotransmitter gamma-aminobutyric acid (GABA) acting at the GABA-A receptors, effectively blocking the GABA-induced uptake of chloride ions and causing hyperexcitability of the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Scaffold protein binding
Specific Function:
Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity).
Gene Name:
ATP2B4
Uniprot ID:
P23634
Molecular Weight:
137919.03 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility.
Gene Name:
ATP1A4
Uniprot ID:
Q13733
Molecular Weight:
114165.44 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known.Mediates cell adhesion of neurons and astrocytes, and promotes neurite outgrowth.
Gene Name:
ATP1B2
Uniprot ID:
P14415
Molecular Weight:
33366.925 Da
Mechanism of Action:
This organochloride inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.