Basic Info

Common NameAdenosylcobalamin(F03807)
2D Structure
Description

Adenosylcobalamin is one of two metabolically active forms synthesized upon ingestion of vitamin B12 and is the predominant form in the liver; it acts as a coenzyme in the reaction catalyzed by methylmalonyl-CoA mutase. A cobalamin (cbl) derivative in which the substituent is deoxyadenosyl. It is one of two metabolically active forms synthesized upon ingestion of vitamin B12 and is the predominant form in the liver; it acts as a coenzyme in the reaction catalyzed by methylmalonyl-CoA mutase (MCM; E.C. 5.4.99.2). Inborn errors of vitamin B12 metabolism are autosomal recessive disorders and have been classified into nine distinct complementation classes. Disorders affecting adenosylcobalamin cause methylmalonic acidemia and metabolic acidosis. Methylmalonyl-CoA mutase catalyzes the conversion of L-methylmalonyl-CoA to succinyl-CoA and uses adenosylcobalamin (AdoCbl) as a cofactor. Cbl must be transported into mitochondria, reduced and adenosylated before it can be utilized by MCM. (A405).

FRCD IDF03807
CAS Number13870-90-1
PubChem CID6436143
FormulaC72H100CoN18O17P
IUPAC Name

(2S,3S,4R)-2-(6-aminopurin-9-yl)-5-methanidyloxolane-3,4-diol;cobalt(3+);[(2R,5S)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] 1-[3-[(2R,3R,4Z,7S,9Z,12S,13S,14Z,17S,18S,19R)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7,12,17-tetrahydro-1H-corrin-21-id-3-yl]propanoylamino]propan-2-yl phosphate

InChI Key

OAJLVMGLJZXSGX-VCABRDNDSA-L

InChI

InChI=1S/C62H90N13O14P.C10H12N5O3.Co/c1-29-20-39-40(21-30(29)2)75(28-70-39)57-52(84)53(41(27-76)87-57)89-90(85,86)88-31(3)26-69-49(83)18-19-59(8)37(22-46(66)80)56-62(11)61(10,25-48(68)82)36(14-17-45(65)79)51(74-62)33(5)55-60(9,24-47(67)81)34(12-15-43(63)77)38(71-55)23-42-58(6,7)35(13-16-44(64)78)50(72-42)32(4)54(59)73-56;1-4-6(16)7(17)10(18-4)15-3-14-5-8(11)12-2-13-9(5)15;/h20-21,23,28,31,34-37,41,52-53,56-57,76,84H,12-19,22,24-27H2,1-11H3,(H15,63,64,65,66,67,68,69,71,72,73,74,77,78,79,80,81,82,83,85,86);2-4,6-7,10,16-17H,1H2,(H2,11,12,13);/q;-1;+3/p-2/t31?,34-,35-,36-,37+,41-,52?,53?,56?,57+,59-,60+,61+,62+;4?,6-,7-,10-;/m10./s1

Canonical SMILES

CC1=CC2=C(C=C1C)N(C=N2)C3C(C(C(O3)CO)OP(=O)([O-])OC(C)CNC(=O)CCC4(C(C5C6(C(C(C(=N6)C(=C7C(C(C(=N7)C=C8C(C(C(=N8)C(=C4[N-]5)C)CCC(=O)N)(C)C)CCC(=O)N)(C)CC(=O)N)C)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O.[CH2-]C1C(C(C(O1)N2C=NC3=C2N=CN=C3N)O)O.[Co+3]

Isomeric SMILES

CC1=CC2=C(C=C1C)N(C=N2)[C@@H]3C(C([C@H](O3)CO)OP(=O)([O-])OC(C)CNC(=O)CC[C@@]\4([C@H](C5[C@]6([C@@]([C@@H](C(=N6)/C(=C\7/[C@@]([C@@H](C(=N7)/C=C\8/C([C@@H](C(=N8)/C(=C4\[N-]5)/C)CCC(=O)N)(C)C)CCC(=O)N)(C)CC(=O)N)/C)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O.[CH2-]C1[C@@H]([C@@H]([C@H](O1)N2C=NC3=C2N=CN=C3N)O)O.[Co+3]

WikipediaAdenosylcobalamin
Synonyms
        
            Cobamamidum [INN-Latin]
        
            DBC coenzyme
        
            Cobalamine coenzyme
        
            Cobamamide [INN:JAN]
        
            Cobamamida [INN-Spanish]
        
            EINECS 237-627-6
        
            Cobamamide
        
            Dibencozide
        
            Funacomide
        
            LM 176
        
Classifies
                

                  
                    Pollutant
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassOrganoheterocyclic compounds
ClassTetrapyrroles and derivatives
SubclassCorrinoids
Intermediate Tree NodesNot available
Direct ParentCobalamin derivatives
Alternative Parents
Molecular FrameworkNot available
SubstituentsCobalamin - Metallotetrapyrrole skeleton - 1-ribofuranosylbenzimidazole - Pentose phosphate - 5'-deoxyribonucleoside - Glycosyl compound - N-glycosyl compound - 6-aminopurine - Monosaccharide phosphate - Benzimidazole - Imidazopyrimidine - Purine - Phosphoethanolamine - Aminopyrimidine - Dialkyl phosphate - Monosaccharide - N-substituted imidazole - Organic phosphoric acid derivative - Fatty amide - Phosphoric acid ester - Imidolactam - Pyrimidine - Alkyl phosphate - Fatty acyl - Benzenoid - Pyrroline - Pyrrolidine - Imidazole - Tetrahydrofuran - Heteroaromatic compound - Azole - Ketimine - Secondary carboxylic acid amide - Secondary alcohol - Primary carboxylic acid amide - Carboxamide group - Carboxylic acid derivative - Azacycle - Organic transition metal salt - Carbene-type 1,3-dipolar compound - Propargyl-type 1,3-dipolar organic compound - Organic 1,3-dipolar compound - Oxacycle - Organic salt - Imine - Alcohol - Hydrocarbon derivative - Organic oxide - Organopnictogen compound - Organonitrogen compound - Organic oxygen compound - Organooxygen compound - Primary alcohol - Carbonyl group - Organic nitrogen compound - Primary amine - Amine - Organic zwitterion - Organic cobalt salt - Aromatic heteropolycyclic compound
DescriptionThis compound belongs to the class of organic compounds known as cobalamin derivatives. These are organic compounds containing a corrin ring, a cobalt atom, an a nucleotide moiety. Cobalamin Derivatives are actually derived from vitamin B12.

Properties

Property NameProperty Value
Molecular Weight1579.608
Hydrogen Bond Donor Count12
Hydrogen Bond Acceptor Count27
Rotatable Bond Count17
Complexity3730
Monoisotopic Mass1578.658
Exact Mass1578.658
Formal Charge0
Heavy Atom Count109
Defined Atom Stereocenter Count13
Undefined Atom Stereocenter Count5
Defined Bond Stereocenter Count3
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count3

References

TitleJournalDatePubmed ID
Novel vitamin B<sub>12</sub>-producing Enterococcus spp. and preliminary in vitro evaluation of probiotic potentials.Appl Microbiol Biotechnol2017 Aug28634850
Transcriptional and Post Transcriptional Control of Enterococcal Gene Regulation201424649509

Targets

General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular Weight:
28870.0 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Zinc ion binding
Specific Function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular Weight:
29245.895 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. May stimulate the sodium/bicarbonate transporter activity of SLC4A4 that acts in pH homeostasis. It is essential for acid overload removal from the retina and retina epithelium, and acid release in the choriocapillaris in the choroid.
Gene Name:
CA4
Uniprot ID:
P22748
Molecular Weight:
35032.075 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular Weight:
64632.86 Da
Mechanism of Action:
Cobalt inhibits heme synthesis by preventing synthesis of 5-aminolaevulinate via inhibition of 5-aminolaevulinate synthase.
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. : http://en.wikipedia.org/wiki/Mercury_poisoning
General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA1
Uniprot ID:
P01876
Molecular Weight:
37654.29 Da
Mechanism of Action:
Cobalt interacts with specific IgA antibodies, resulting in immunosensitization.
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA2
Uniprot ID:
P01877
Molecular Weight:
36526.005 Da
Mechanism of Action:
Cobalt interacts with specific IgA antibodies, resulting in immunosensitization.
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Immunoglobulin receptor binding
Gene Name:
IGHE
Uniprot ID:
P01854
Molecular Weight:
47018.665 Da
Mechanism of Action:
Cobalt interacts with specific IgE antibodies, resulting in immunosensitization.
References
  1. Shirakawa T, Kusaka Y, Fujimura N, Goto S, Morimoto K: The existence of specific antibodies to cobalt in hard metal asthma. Clin Allergy. 1988 Sep;18(5):451-60. [3233723 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.
Gene Name:
CACNA1C
Uniprot ID:
Q13936
Molecular Weight:
248974.1 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1F
Uniprot ID:
O60840
Molecular Weight:
220675.9 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB1
Uniprot ID:
Q02641
Molecular Weight:
65712.995 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB2
Uniprot ID:
Q08289
Molecular Weight:
73579.925 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB3
Uniprot ID:
P54284
Molecular Weight:
54531.425 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB4
Uniprot ID:
O00305
Molecular Weight:
58168.625 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1B gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by omega-conotoxin-GVIA (omega-CTx-GVIA) and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons.
Gene Name:
CACNA1B
Uniprot ID:
Q00975
Molecular Weight:
262493.84 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q-type calcium currents. P/Q-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by the funnel toxin (Ftx) and by the omega-agatoxin-IVA (omega-Aga-IVA). They are however insensitive to dihydropyridines (DHP), and omega-conotoxin-GVIA (omega-CTx-GVIA).
Gene Name:
CACNA1A
Uniprot ID:
O00555
Molecular Weight:
282362.39 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1E gives rise to R-type calcium currents. R-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by nickel, and partially by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), omega-conotoxin-GVIA (omega-CTx-GVIA), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1E subunit could be involved in the modulation of firing patterns of neurons which is important for information processing.
Gene Name:
CACNA1E
Uniprot ID:
Q15878
Molecular Weight:
261729.05 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG3
Uniprot ID:
O60359
Molecular Weight:
35548.14 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG4
Uniprot ID:
Q9UBN1
Molecular Weight:
36578.39 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the gating properties of AMPA-selective glutamate receptors (AMPARs). Modulates their gating properties by accelerating their rates of activation, deactivation and desensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity for GRIA1, GRIA4 and the long isoform of GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG5
Uniprot ID:
Q9UF02
Molecular Weight:
30902.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG6
Uniprot ID:
Q9BXT2
Molecular Weight:
28128.745 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG7
Uniprot ID:
P62955
Molecular Weight:
31002.29 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG8
Uniprot ID:
Q8WXS5
Molecular Weight:
43312.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state. Modulates calcium current when coexpressed with CACNA1G (By similarity).
Gene Name:
TMEM37
Uniprot ID:
Q8WXS4
Molecular Weight:
20931.565 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation-contraction coupling (By similarity).
Gene Name:
CACNA2D1
Uniprot ID:
P54289
Molecular Weight:
124566.93 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) but not T-type (CACNA1G) (By similarity).
Gene Name:
CACNA2D3
Uniprot ID:
Q8IZS8
Molecular Weight:
123010.22 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel.
Gene Name:
CACNA2D4
Uniprot ID:
Q7Z3S7
Molecular Weight:
127936.93 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS1
Uniprot ID:
P13196
Molecular Weight:
70580.325 Da
Mechanism of Action:
Cobalt inhibits heme synthesis by preventing synthesis of 5-aminolaevulinate via inhibition of 5-aminolaevulinate synthase.
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. : http://en.wikipedia.org/wiki/Mercury_poisoning
General Function:
Voltage-gated calcium channel activity
Specific Function:
This protein is a subunit of the dihydropyridine (DHP) sensitive calcium channel. Plays a role in excitation-contraction coupling. The skeletal muscle DHP-sensitive Ca(2+) channel may function only as a multiple subunit complex.
Gene Name:
CACNG1
Uniprot ID:
Q06432
Molecular Weight:
25028.105 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Protein homodimerization activity
Specific Function:
Involved in DNA excision repair. Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHEK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine dimmers (CPD), sites of DNA damage after UV irradiation.
Gene Name:
XPA
Uniprot ID:
P23025
Molecular Weight:
31367.71 Da
Mechanism of Action:
Cobalt inhibits DNA repair by interacting with zinc finger DNA repair proteins.
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Zinc ion binding
Specific Function:
Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP-ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a T-helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production. Required for PARP9 and DTX3L recruitment to DNA damage sites. PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites.
Gene Name:
PARP1
Uniprot ID:
P09874
Molecular Weight:
113082.945 Da
Mechanism of Action:
Cobalt inhibits DNA repair by interacting with zinc finger DNA repair proteins.
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Voltage-gated calcium channel activity involved sa node cell action potential
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1D
Uniprot ID:
Q01668
Molecular Weight:
245138.75 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.
Gene Name:
CACNA1S
Uniprot ID:
Q13698
Molecular Weight:
212348.1 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG2
Uniprot ID:
Q9Y698
Molecular Weight:
35965.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis.
Gene Name:
CACNA2D2
Uniprot ID:
Q9NY47
Molecular Weight:
129816.095 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]