Basic Info

Common NameCyanocobalamin(F03808)
2D Structure
Description

Cyanocobalamin (commonly known as Vitamin B12) is the most chemically complex of all the vitamins. Cyanocobalamin's structure is based on a corrin ring, which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Cyanocobalamin cannot be made by plants or by animals, as the only type of organisms that have the enzymes required for the synthesis of cyanocobalamin are bacteria and archaea. Higher plants do not concentrate cyanocobalamin from the soil and so are a poor source of the substance as compared with animal tissues. Cyanocobalamin is naturally found in foods including meat (especially liver and shellfish), eggs, and milk products. [HMDB]

FRCD IDF03808
CAS Number68-19-9
PubChem CID44176380
FormulaC63H89CoN14O14P
IUPAC Name

cobalt(2+);[(2R,3S,4R,5S)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2R)-1-[3-[(1R,2R,3R,4Z,7S,9Z,12S,13S,14Z,17S,18S,19R)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2,7,12,17-tetrahydro-1H-corrin-21-id-3-yl]propanoylamino]propan-2-yl] hydrogen phosphate;cyanide

InChI Key

AGVAZMGAQJOSFJ-WZHZPDAFSA-M

InChI

InChI=1S/C62H90N13O14P.CN.Co/c1-29-20-39-40(21-30(29)2)75(28-70-39)57-52(84)53(41(27-76)87-57)89-90(85,86)88-31(3)26-69-49(83)18-19-59(8)37(22-46(66)80)56-62(11)61(10,25-48(68)82)36(14-17-45(65)79)51(74-62)33(5)55-60(9,24-47(67)81)34(12-15-43(63)77)38(71-55)23-42-58(6,7)35(13-16-44(64)78)50(72-42)32(4)54(59)73-56;1-2;/h20-21,23,28,31,34-37,41,52-53,56-57,76,84H,12-19,22,24-27H2,1-11H3,(H15,63,64,65,66,67,68,69,71,72,73,74,77,78,79,80,81,82,83,85,86);;/q;-1;+2/p-1/t31-,34-,35-,36-,37+,41-,52-,53-,56-,57+,59-,60+,61+,62+;;/m1../s1

Canonical SMILES

CC1=CC2=C(C=C1C)N(C=N2)C3C(C(C(O3)CO)OP(=O)(O)OC(C)CNC(=O)CCC4(C(C5C6(C(C(C(=N6)C(=C7C(C(C(=N7)C=C8C(C(C(=N8)C(=C4[N-]5)C)CCC(=O)N)(C)C)CCC(=O)N)(C)CC(=O)N)C)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O.[C-]#N.[Co+2]

Isomeric SMILES

CC1=CC2=C(C=C1C)N(C=N2)[C@@H]3[C@@H]([C@@H]([C@H](O3)CO)OP(=O)(O)O[C@H](C)CNC(=O)CC[C@@]\4([C@H]([C@@H]5[C@]6([C@@]([C@@H](C(=N6)/C(=C\7/[C@@]([C@@H](C(=N7)/C=C\8/C([C@@H](C(=N8)/C(=C4\[N-]5)/C)CCC(=O)N)(C)C)CCC(=O)N)(C)CC(=O)N)/C)CCC(=O)N)(C)CC(=O)N)C)CC(=O)N)C)O.[C-]#N.[Co+2]

WikipediaCyanocobalamin
Synonyms
        
            Rhodacryst
        
            Cyanocob(III)alamin
        
            Biocobalamine
        
            Cykobeminet
        
            Dodecavite
        
            Duodecibin
        
            Emociclina
        
            Normocytin
        
            Pernipuron
        
            Rubrocitol
        
Classifies
                

                  
                    Pollutant
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassOrganoheterocyclic compounds
ClassTetrapyrroles and derivatives
SubclassCorrinoids
Intermediate Tree NodesNot available
Direct ParentCobalamin derivatives
Alternative Parents
Molecular FrameworkNot available
SubstituentsCobalamin - Metallotetrapyrrole skeleton - 1-ribofuranosylbenzimidazole - Pentose phosphate - N-glycosyl compound - Glycosyl compound - Monosaccharide phosphate - Pentose monosaccharide - Benzimidazole - Phosphoethanolamine - Dialkyl phosphate - Phosphoric acid ester - Fatty amide - Fatty acyl - Monosaccharide - N-substituted imidazole - Organic phosphoric acid derivative - Alkyl phosphate - Benzenoid - Azole - Tetrahydrofuran - Imidazole - Pyrrolidine - Heteroaromatic compound - Pyrroline - Carboxamide group - Ketimine - Secondary carboxylic acid amide - Secondary alcohol - Primary carboxylic acid amide - Propargyl-type 1,3-dipolar organic compound - Carboxylic acid derivative - Oxacycle - Carbene-type 1,3-dipolar compound - Organic 1,3-dipolar compound - Azacycle - Organic transition metal salt - Carbonyl group - Organic cobalt salt - Imine - Organic salt - Organonitrogen compound - Hydrocarbon derivative - Organic oxide - Organopnictogen compound - Organooxygen compound - Alcohol - Organic zwitterion - Organic nitrogen compound - Organic oxygen compound - Primary alcohol - Aromatic heteropolycyclic compound
DescriptionThis compound belongs to the class of organic compounds known as cobalamin derivatives. These are organic compounds containing a corrin ring, a cobalt atom, an a nucleotide moiety. Cobalamin Derivatives are actually derived from vitamin B12.

Properties

Property NameProperty Value
Molecular Weight1356.396
Hydrogen Bond Donor Count10
Hydrogen Bond Acceptor Count21
Rotatable Bond Count16
Complexity3220
Monoisotopic Mass1355.575
Exact Mass1355.575
Formal Charge0
Heavy Atom Count93
Defined Atom Stereocenter Count14
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count3
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count3

References

TitleJournalDatePubmed ID
Chapter 30: historical aspects of the major neurological vitamin deficiency disorders: the water-soluble B vitamins.Handb Clin Neurol201019892133
Vitamin and mineral status of trained athletes including the effects of supplementation.Am J Clin Nutr1988 Feb3341246
Modifying role of dietary factors on the mutagenicity of aflatoxin B1: in vitro effect of vitamins.Mutat Res1987 Jun3108659

Targets

General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA1
Uniprot ID:
P01876
Molecular Weight:
37654.29 Da
Mechanism of Action:
Cobalt interacts with specific IgA antibodies, resulting in immunosensitization.
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Antigen binding
Specific Function:
Ig alpha is the major immunoglobulin class in body secretions. It may serve both to defend against local infection and to prevent access of foreign antigens to the general immunologic system.
Gene Name:
IGHA2
Uniprot ID:
P01877
Molecular Weight:
36526.005 Da
Mechanism of Action:
Cobalt interacts with specific IgA antibodies, resulting in immunosensitization.
References
  1. Bencko V, Wagner V, Wagnerova M, Reichrtova E: Immuno-biochemical findings in groups of individuals occupationally and non-occupationally exposed to emissions containing nickel and cobalt. J Hyg Epidemiol Microbiol Immunol. 1983;27(4):387-94. [6663071 ]
General Function:
Immunoglobulin receptor binding
Gene Name:
IGHE
Uniprot ID:
P01854
Molecular Weight:
47018.665 Da
Mechanism of Action:
Cobalt interacts with specific IgE antibodies, resulting in immunosensitization.
References
  1. Shirakawa T, Kusaka Y, Fujimura N, Goto S, Morimoto K: The existence of specific antibodies to cobalt in hard metal asthma. Clin Allergy. 1988 Sep;18(5):451-60. [3233723 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB1
Uniprot ID:
Q02641
Molecular Weight:
65712.995 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Metal ion binding
Specific Function:
Primary vitamin B12-binding and transport protein. Delivers cobalamin to cells.
Gene Name:
TCN2
Uniprot ID:
P20062
Molecular Weight:
47534.54 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Al-Alami JR, Tanner SM, Tayeh MK, de la Chapelle A, El-Shanti H: Homozygous AMN mutation in hereditary selective intestinal malabsorption of vitamin B12 in Jordan. Saudi Med J. 2005 Jul;26(7):1061-4. [16047053 ]
General Function:
Cobalamin binding
Specific Function:
May be involved in the binding and intracellular trafficking of cobalamin (vitamin B12).
Gene Name:
MMACHC
Uniprot ID:
Q9Y4U1
Molecular Weight:
31728.095 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Chandler RJ, Aswani V, Tsai MS, Falk M, Wehrli N, Stabler S, Allen R, Sedensky M, Kazazian HH, Venditti CP: Propionyl-CoA and adenosylcobalamin metabolism in Caenorhabditis elegans: evidence for a role of methylmalonyl-CoA epimerase in intermediary metabolism. Mol Genet Metab. 2006 Sep-Oct;89(1-2):64-73. Epub 2006 Jul 14. [16843692 ]
General Function:
Hydrolase activity
Specific Function:
Probable GTPase. May function as chaperone. May be involved in the transport of cobalamin (Cbl) into mitochondria for the final steps of adenosylcobalamin (AdoCbl) synthesis.
Gene Name:
MMAA
Uniprot ID:
Q8IVH4
Molecular Weight:
46537.865 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Overington JP, Al-Lazikani B, Hopkins AL: How many drug targets are there? Nat Rev Drug Discov. 2006 Dec;5(12):993-6. [17139284 ]
General Function:
Protein homodimerization activity
Specific Function:
Involved in DNA excision repair. Initiates repair by binding to damaged sites with various affinities, depending on the photoproduct and the transcriptional state of the region. Required for UV-induced CHEK1 phosphorylation and the recruitment of CEP164 to cyclobutane pyrimidine dimmers (CPD), sites of DNA damage after UV irradiation.
Gene Name:
XPA
Uniprot ID:
P23025
Molecular Weight:
31367.71 Da
Mechanism of Action:
Cobalt inhibits DNA repair by interacting with zinc finger DNA repair proteins.
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular Weight:
28870.0 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Zinc ion binding
Specific Function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular Weight:
29245.895 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. May stimulate the sodium/bicarbonate transporter activity of SLC4A4 that acts in pH homeostasis. It is essential for acid overload removal from the retina and retina epithelium, and acid release in the choriocapillaris in the choroid.
Gene Name:
CA4
Uniprot ID:
P22748
Molecular Weight:
35032.075 Da
Mechanism of Action:
Cobalt inhibits carbonic anhydrases.
References
  1. Ekinci D, Beydemir S, Kufrevioglu OI: In vitro inhibitory effects of some heavy metals on human erythrocyte carbonic anhydrases. J Enzyme Inhib Med Chem. 2007 Dec;22(6):745-50. doi: 10.1080/14756360601176048 . [18237030 ]
General Function:
Cob(i)yrinic acid a,c-diamide adenosyltransferase activity
Gene Name:
MMAB
Uniprot ID:
Q96EY8
Molecular Weight:
27387.975 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Zhang J, Dobson CM, Wu X, Lerner-Ellis J, Rosenblatt DS, Gravel RA: Impact of cblB mutations on the function of ATP:cob(I)alamin adenosyltransferase in disorders of vitamin B12 metabolism. Mol Genet Metab. 2006 Apr;87(4):315-22. Epub 2006 Jan 24. [16439175 ]
General Function:
Protein complex binding
Specific Function:
Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine.
Gene Name:
MTHFR
Uniprot ID:
P42898
Molecular Weight:
74595.895 Da
References
  1. Nakamura T, Saionji K, Hiejima Y, Hirayama H, Tago K, Takano H, Tajiri M, Hayashi K, Kawabata M, Funamizu M, Makita Y, Hata A: Methylenetetrahydrofolate reductase genotype, vitamin B12, and folate influence plasma homocysteine in hemodialysis patients. Am J Kidney Dis. 2002 May;39(5):1032-9. [11979347 ]
General Function:
Cobalamin binding
Specific Function:
Binds vitamin B12 with femtomolar affinity and protects it from the acidic environment of the stomach.
Gene Name:
TCN1
Uniprot ID:
P20061
Molecular Weight:
48206.32 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Carmel R: Haptocorrin (transcobalamin I) and cobalamin deficiencies. Clin Chem. 2007 Feb;53(2):367-8; author reply 368-9. [17259255 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular Weight:
64632.86 Da
Mechanism of Action:
Cobalt inhibits heme synthesis by preventing synthesis of 5-aminolaevulinate via inhibition of 5-aminolaevulinate synthase.
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. : http://en.wikipedia.org/wiki/Mercury_poisoning
General Function:
Receptor binding
Specific Function:
Necessary for efficient absorption of vitamin B12. May direct the production of trunk mesoderm during development by modulating a bone morphogenetic protein (BMP) signaling pathway in the underlying visceral endoderm (By similarity).
Gene Name:
AMN
Uniprot ID:
Q9BXJ7
Molecular Weight:
47753.91 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Al-Alami JR, Tanner SM, Tayeh MK, de la Chapelle A, El-Shanti H: Homozygous AMN mutation in hereditary selective intestinal malabsorption of vitamin B12 in Jordan. Saudi Med J. 2005 Jul;26(7):1061-4. [16047053 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.
Gene Name:
CACNA1C
Uniprot ID:
Q13936
Molecular Weight:
248974.1 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity involved sa node cell action potential
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1D gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1D
Uniprot ID:
Q01668
Molecular Weight:
245138.75 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1F gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA).
Gene Name:
CACNA1F
Uniprot ID:
O60840
Molecular Weight:
220675.9 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1S gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1S subunit play an important role in excitation-contraction coupling in skeletal muscle.
Gene Name:
CACNA1S
Uniprot ID:
Q13698
Molecular Weight:
212348.1 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB3
Uniprot ID:
P54284
Molecular Weight:
54531.425 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB4
Uniprot ID:
O00305
Molecular Weight:
58168.625 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1A gives rise to P and/or Q-type calcium currents. P/Q-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by the funnel toxin (Ftx) and by the omega-agatoxin-IVA (omega-Aga-IVA). They are however insensitive to dihydropyridines (DHP), and omega-conotoxin-GVIA (omega-CTx-GVIA).
Gene Name:
CACNA1A
Uniprot ID:
O00555
Molecular Weight:
282362.39 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
This protein is a subunit of the dihydropyridine (DHP) sensitive calcium channel. Plays a role in excitation-contraction coupling. The skeletal muscle DHP-sensitive Ca(2+) channel may function only as a multiple subunit complex.
Gene Name:
CACNG1
Uniprot ID:
Q06432
Molecular Weight:
25028.105 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG2
Uniprot ID:
Q9Y698
Molecular Weight:
35965.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG4
Uniprot ID:
Q9UBN1
Molecular Weight:
36578.39 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the gating properties of AMPA-selective glutamate receptors (AMPARs). Modulates their gating properties by accelerating their rates of activation, deactivation and desensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity for GRIA1, GRIA4 and the long isoform of GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG5
Uniprot ID:
Q9UF02
Molecular Weight:
30902.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG6
Uniprot ID:
Q9BXT2
Molecular Weight:
28128.745 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Displays subunit-specific AMPA receptor regulation. Shows specificity only for GRIA1 and GRIA2. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG7
Uniprot ID:
P62955
Molecular Weight:
31002.29 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel.
Gene Name:
CACNA2D4
Uniprot ID:
Q7Z3S7
Molecular Weight:
127936.93 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization and by mediating their resensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state.
Gene Name:
CACNG8
Uniprot ID:
Q8WXS5
Molecular Weight:
43312.44 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
Thought to stabilize the calcium channel in an inactivated (closed) state. Modulates calcium current when coexpressed with CACNA1G (By similarity).
Gene Name:
TMEM37
Uniprot ID:
Q8WXS4
Molecular Weight:
20931.565 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Plays an important role in excitation-contraction coupling (By similarity).
Gene Name:
CACNA2D1
Uniprot ID:
P54289
Molecular Weight:
124566.93 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) and possibly T-type (CACNA1G). Overexpression induces apoptosis.
Gene Name:
CACNA2D2
Uniprot ID:
Q9NY47
Molecular Weight:
129816.095 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS1
Uniprot ID:
P13196
Molecular Weight:
70580.325 Da
Mechanism of Action:
Cobalt inhibits heme synthesis by preventing synthesis of 5-aminolaevulinate via inhibition of 5-aminolaevulinate synthase.
References
  1. Wikipedia. Mercury poisoning. Last Updated 8 March 2009. : http://en.wikipedia.org/wiki/Mercury_poisoning
General Function:
Oxidoreductase activity, oxidizing metal ions, nad or nadp as acceptor
Specific Function:
Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects.
Gene Name:
MTRR
Uniprot ID:
Q9UBK8
Molecular Weight:
80409.22 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. O'Leary VB, Mills JL, Pangilinan F, Kirke PN, Cox C, Conley M, Weiler A, Peng K, Shane B, Scott JM, Parle-McDermott A, Molloy AM, Brody LC: Analysis of methionine synthase reductase polymorphisms for neural tube defects risk association. Mol Genet Metab. 2005 Jul;85(3):220-7. Epub 2005 Mar 17. [15979034 ]
General Function:
Modified amino acid binding
Specific Function:
Involved in the degradation of several amino acids, odd-chain fatty acids and cholesterol via propionyl-CoA to the tricarboxylic acid cycle. MCM has different functions in other species.
Gene Name:
MUT
Uniprot ID:
P22033
Molecular Weight:
83133.755 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Worgan LC, Niles K, Tirone JC, Hofmann A, Verner A, Sammak A, Kucic T, Lepage P, Rosenblatt DS: Spectrum of mutations in mut methylmalonic acidemia and identification of a common Hispanic mutation and haplotype. Hum Mutat. 2006 Jan;27(1):31-43. [16281286 ]
General Function:
Transporter activity
Specific Function:
Cotransporter which plays a role in lipoprotein, vitamin and iron metabolism, by facilitating their uptake. Binds to ALB, MB, Kappa and lambda-light chains, TF, hemoglobin, GC, SCGB1A1, APOA1, high density lipoprotein, and the GIF-cobalamin complex. The binding of all ligands requires calcium. Serves as important transporter in several absorptive epithelia, including intestine, renal proximal tubules and embryonic yolk sac. Interaction with LRP2 mediates its trafficking throughout vesicles and facilitates the uptake of specific ligands like GC, hemoglobin, ALB, TF and SCGB1A1. Interaction with AMN controls its trafficking to the plasma membrane and facilitates endocytosis of ligands. May play an important role in the development of the peri-implantation embryo through internalization of APOA1 and cholesterol. Binds to LGALS3 at the maternal-fetal interface.
Gene Name:
CUBN
Uniprot ID:
O60494
Molecular Weight:
398732.93 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.
References
  1. Fedosov SN, Fedosova NU, Berglund L, Moestrup SK, Nexo E, Petersen TE: Composite organization of the cobalamin binding and cubilin recognition sites of intrinsic factor. Biochemistry. 2005 Mar 8;44(9):3604-14. [15736970 ]
General Function:
Zinc ion binding
Specific Function:
Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP-ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a T-helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production. Required for PARP9 and DTX3L recruitment to DNA damage sites. PARP1-dependent PARP9-DTX3L-mediated ubiquitination promotes the rapid and specific recruitment of 53BP1/TP53BP1, UIMC1/RAP80, and BRCA1 to DNA damage sites.
Gene Name:
PARP1
Uniprot ID:
P09874
Molecular Weight:
113082.945 Da
Mechanism of Action:
Cobalt inhibits DNA repair by interacting with zinc finger DNA repair proteins.
References
  1. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A: Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect. 2002 Oct;110 Suppl 5:797-9. [12426134 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
The beta subunit of voltage-dependent calcium channels contributes to the function of the calcium channel by increasing peak calcium current, shifting the voltage dependencies of activation and inactivation, modulating G protein inhibition and controlling the alpha-1 subunit membrane targeting.
Gene Name:
CACNB2
Uniprot ID:
Q08289
Molecular Weight:
73579.925 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1B gives rise to N-type calcium currents. N-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by omega-conotoxin-GVIA (omega-CTx-GVIA) and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1B subunit may play a role in directed migration of immature neurons.
Gene Name:
CACNA1B
Uniprot ID:
Q00975
Molecular Weight:
262493.84 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1E gives rise to R-type calcium currents. R-type calcium channels belong to the 'high-voltage activated' (HVA) group and are blocked by nickel, and partially by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to dihydropyridines (DHP), omega-conotoxin-GVIA (omega-CTx-GVIA), and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing alpha-1E subunit could be involved in the modulation of firing patterns of neurons which is important for information processing.
Gene Name:
CACNA1E
Uniprot ID:
Q15878
Molecular Weight:
261729.05 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated calcium channel activity
Specific Function:
Regulates the trafficking and gating properties of AMPA-selective glutamate receptors (AMPARs). Promotes their targeting to the cell membrane and synapses and modulates their gating properties by slowing their rates of activation, deactivation and desensitization. Does not show subunit-specific AMPA receptor regulation and regulates all AMPAR subunits. Thought to stabilize the calcium channel in an inactivated (closed) state (By similarity).
Gene Name:
CACNG3
Uniprot ID:
O60359
Molecular Weight:
35548.14 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Voltage-gated ion channel activity
Specific Function:
The alpha-2/delta subunit of voltage-dependent calcium channels regulates calcium current density and activation/inactivation kinetics of the calcium channel. Acts as a regulatory subunit for P/Q-type calcium channel (CACNA1A), N-type (CACNA1B), L-type (CACNA1C OR CACNA1D) but not T-type (CACNA1G) (By similarity).
Gene Name:
CACNA2D3
Uniprot ID:
Q8IZS8
Molecular Weight:
123010.22 Da
Mechanism of Action:
Cobalt blocks high-voltage-activated calcium channels, possibly impairing neurotransmission.
References
  1. Castelli L, Tanzi F, Taglietti V, Magistretti J: Cu2+, Co2+, and Mn2+ modify the gating kinetics of high-voltage-activated Ca2+ channels in rat palaeocortical neurons. J Membr Biol. 2003 Oct 1;195(3):121-36. [14724759 ]
General Function:
Zinc ion binding
Specific Function:
Catalyzes the transfer of a methyl group from methyl-cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity).
Gene Name:
MTR
Uniprot ID:
Q99707
Molecular Weight:
140525.91 Da
Mechanism of Action:
Vitamin B12 is used in the body in two forms: Methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine. Methionine in turn is required for DNA methylation. 5-Deoxyadenosyl cobalamin is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substances that carries oxygen in red blood cells.