Fenvalerate
(right click,save link as to download,it is a temp file,please download as soon as possible, you can also use CTRL+S to save the whole html page)
Basic Info
Common Name | Fenvalerate(F04053) |
2D Structure | |
Description | Agricultural, public health and animal husbandry insecticide.Fenvalerate is an insecticide. It is a mixture of four optical isomers which have different insecticidal activities. The 2-S alpha (or SS) configuration is the most insecticidally active isomer. Fenvalerate consists of about 23% of this isomer. (Wikipedia) Fenvalerate has been shown to exhibit steroidogenic function (A7791). Fenvalerate belongs to the family of Pyrethroids. These are organic compounds similar to the pyrethrins. Some pyrethroids containing a chrysanthemic acid esterified with a cyclopentenone (pyrethrins), or with a phenoxybenzyl. |
FRCD ID | F04053 |
CAS Number | 51630-58-1 |
PubChem CID | 3347 |
Formula | C25H22ClNO3 |
IUPAC Name | [cyano-(3-phenoxyphenyl)methyl] 2-(4-chlorophenyl)-3-methylbutanoate |
InChI Key | NYPJDWWKZLNGGM-UHFFFAOYSA-N |
InChI | InChI=1S/C25H22ClNO3/c1-17(2)24(18-11-13-20(26)14-12-18)25(28)30-23(16-27)19-7-6-10-22(15-19)29-21-8-4-3-5-9-21/h3-15,17,23-24H,1-2H3 |
Canonical SMILES | CC(C)C(C1=CC=C(C=C1)Cl)C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3 |
Isomeric SMILES | CC(C)C(C1=CC=C(C=C1)Cl)C(=O)OC(C#N)C2=CC(=CC=C2)OC3=CC=CC=C3 |
Wikipedia | Fenvalerate |
Synonyms | Ectrin fenvalerate 51630-58-1 Pydrin Phenvalerate Sumicidin Belmark Aqmatrine Phenoxin Agrofen |
Classifies | Pollutant Pesticide |
Update Date | Nov 13, 2018 17:07 |
Chemical Taxonomy
Kingdom | Organic compounds |
Superclass | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Subclass | Fatty acid esters |
Intermediate Tree Nodes | Not available |
Direct Parent | Pyrethroids |
Alternative Parents | |
Molecular Framework | Aromatic homomonocyclic compounds |
Substituents | Pyrethroid skeleton - Diphenylether - Diaryl ether - Benzyloxycarbonyl - Phenylpropane - Phenoxy compound - Phenol ether - Chlorobenzene - Halobenzene - Aryl chloride - Aryl halide - Monocyclic benzene moiety - Benzenoid - Carboxylic acid ester - Nitrile - Carbonitrile - Monocarboxylic acid or derivatives - Ether - Carboxylic acid derivative - Organohalogen compound - Organonitrogen compound - Organooxygen compound - Hydrocarbon derivative - Carbonyl group - Organic oxide - Organopnictogen compound - Organic oxygen compound - Organic nitrogen compound - Organochloride - Aromatic homomonocyclic compound |
Description | This compound belongs to the class of organic compounds known as pyrethroids. These are organic compounds similar to the pyrethrins. Some pyrethroids containing a chrysanthemic acid esterified with a cyclopentenone (pyrethrins), or with a phenoxybenzyl group. |
Properties
Property Name | Property Value |
---|---|
Molecular Weight | 419.905 |
Hydrogen Bond Donor Count | 0 |
Hydrogen Bond Acceptor Count | 4 |
Rotatable Bond Count | 8 |
Complexity | 586 |
Monoisotopic Mass | 419.129 |
Exact Mass | 419.129 |
XLogP | 6.2 |
Formal Charge | 0 |
Heavy Atom Count | 30 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 2 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
MRLs
Food | Product Code | Country | MRLs | Application Date | Notes |
---|---|---|---|---|---|
Strawberry (Absinth/common wormwood, Agrimony, Alfalfa/lucerne, Aloe (leaf gel), Alpine ladies mantle, Bearberry, Bilberry/European blueberry/whortleberry, Birch, Bitter orange/sour orange, Blackbe... | 0632010 | European Union | 0.1* | 03/04/2015 | |
Rice (African rice, Hybrid Nerica®, Indian rice/wild rice,) | 0500060 | European Union | 0.02* | 03/04/2015 | |
Rye | 0500070 | European Union | 0.2 | 03/04/2015 | |
Teas | 0610000 | European Union | 0.1* | 03/04/2015 | |
Sorghum (Durra/jowari/milo, Sudan grass, Other species of genus Sorghum, not elsewhere mentioned,) | 0500080 | European Union | 0.02* | 03/04/2015 | |
Coffee beans | 0620000 | European Union | 0.1* | 03/04/2015 | |
Parsley (Root parsley leaves,) | 0256040 | European Union | 0.05* | 03/04/2015 | |
Peanuts/groundnuts | 0401020 | European Union | 0.05* | 03/04/2015 | |
Rosemary (Santolina/green lavander cotton, Green santolina,) | 0256060 | European Union | 0.05* | 03/04/2015 | |
Laurel/bay leaves (Curry leaves, Kaffir lime leaves, Siamese cassia, Wild betel leaves, Pandan leaves,) | 0256090 | European Union | 0.05* | 03/04/2015 | |
Tarragon (Aztec sweet herb, Epazote/Mexican tea/wormseed, Hyssop, Lemongrass, Mexican oregano, Nettle, Other species of the genus Urtica, not elsewhere mentioned, Russian tarragon, Stevia,) | 0256100 | European Union | 0.05* | 03/04/2015 | |
Others (2) | 0256990 | European Union | 0.05* | 03/04/2015 | |
Beans (with pods) (Azuki beans, Black eyed peas/cowpeas, Broad beans/fava beans/horse beans/tic beans, Borlotti beans/cannelini beans/common beans/flageolets/French beans/slicing beans/snap beans, ... | 0260010 | European Union | 0.1 | 03/04/2015 | |
Beans (without pods) (Azuki beans, Black eyed peas/cowpeas, Broad beans/fava beans/horse beans/tic beans, Borlotti beans/cannelini beans/common beans/flageolets/French beans/slicing beans/snap bean... | 0260020 | European Union | 0.02* | 03/04/2015 | |
Peas (with pods) (Asparagus peas, Chickling vetches, Chickpeas/Bengal gram, Garden peas/green peas/mangetout/snow peas/split peas/sugar peas, Moringa/drumstick tree pods, Pigeon peas,) | 0260030 | European Union | 0.1 | 03/04/2015 | |
Peas (without pods) (Asparagus peas, Chickling vetches, Chickpeas/Bengal gram, Garden peas/green peas/mangetout/snow peas/split peas/sugar peas, Moringa/drumstick tree pods, Pigeon peas,) | 0260040 | European Union | 0.02* | 03/04/2015 | |
Lentils (Lupins/lupini beans, Lupins/lupini beans, Lupins/lupini beans, Lupins/lupini beans,) | 0260050 | European Union | 0.02* | 03/04/2015 | |
Others (2) | 0260990 | European Union | 0.02* | 03/04/2015 | |
Stem vegetables | 0270000 | European Union | 0.02* | 03/04/2015 | |
Asparagus (Hop sprouts,) | 0270010 | European Union | 0.02* | 03/04/2015 |
References
Title | Journal | Date | Pubmed ID |
---|---|---|---|
Occurrence of multiclass pesticide residues in tomato samples collected fromdifferent markets of Iran. | J Environ Health Sci Eng | 2018 May 7 | 29983989 |
Pyrethroid pesticide residues in the global environment: An overview. | Chemosphere | 2018 Jan | 29145144 |
Rapid, low temperature synthesis of molecularly imprinted covalent organicframeworks for the highly selective extraction of cyano pyrethroids from plantsamples. | Anal Chim Acta | 2018 Feb 25 | 29291801 |
Factors Affecting Transfer of Pyrethroid Residues from Herbal Teas to Infusionand Influence of Physicochemical Properties of Pesticides. | Int J Environ Res Public Health | 2017 Sep 30 | 28973970 |
Surveillance of pesticide residues in fruits and vegetables from Accra Metropolismarkets, Ghana, 2010-2012: a case study in Sub-Saharan Africa. | Environ Sci Pollut Res Int | 2017 Jul | 28589271 |
Determination of pesticide and phthalate residues in tea by QuEChERS method andtheir fate in processing. | Environ Sci Pollut Res Int | 2017 Jan | 27854062 |
The insecticide esfenvalerate modulates neuronal excitability in mammaliancentral nervous system in vitro. | Toxicol Lett | 2017 Feb 5 | 28007640 |
Realistic pesticide exposure through water and food amplifies long-term effectsin a Limnephilid caddisfly. | Sci Total Environ | 2017 Feb 15 | 28024748 |
Reduced ultraviolet light transmission increases insecticide longevity inprotected culture raspberry production. | Chemosphere | 2017 Dec | 28957763 |
Pesticide residues in nut-planted soils of China and their relationship betweennut/soil. | Chemosphere | 2017 Aug | 28391151 |
Pesticide Residues in Honey from the Major Honey Producing Forest Belts in Ghana. | J Environ Public Health | 2017 | 28951746 |
Measurement of pyrethroids and their environmental degradation products in fresh fruits and vegetables using a modification of the quick easy cheap effectiverugged safe (QuEChERS) method. | Talanta | 2016 May 1 | 26946008 |
Isolation of broad-specificity domain antibody from phage library for developmentof pyrethroid immunoassay. | Anal Biochem | 2016 Jun 1 | 26965575 |
Residue levels and risk assessment of pesticides in nuts of China. | Chemosphere | 2016 Feb | 26408971 |
Occurrence and spatial distribution of pesticide residues in butter and ghee(clarified butter fat) in Punjab (India). | Environ Monit Assess | 2016 Feb | 26781716 |
A method for the simultaneous quantification of eight metabolites of syntheticpyrethroids in urine of the general population using gas chromatography-tandemmass spectrometry. | Anal Bioanal Chem | 2016 Aug | 27240420 |
Determinations for Pesticides on Black, Green, Oolong, and White Teas by GasChromatography Triple-Quadrupole Mass Spectrometry. | J Agric Food Chem | 2015 Sep 23 | 26209005 |
Comparative toxicities of organophosphate and pyrethroid insecticides to aquatic macroarthropods. | Chemosphere | 2015 Sep | 25966044 |
Evaluating sub-lethal effects of orchard-applied pyrethroids using video-trackingsoftware to quantify honey bee behaviors. | Chemosphere | 2015 Sep | 25966045 |
Effect of Chinese traditional cooking on eight pesticides residue during cowpea processing. | Food Chem | 2015 Mar 1 | 25306325 |
Targets
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Recruited to promoters via its interaction with BAZ1B/WSTF which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.
- Gene Name:
- VDR
- Uniprot ID:
- P11473
- Molecular Weight:
- 48288.64 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.
- Gene Name:
- SCN10A
- Uniprot ID:
- Q9Y5Y9
- Molecular Weight:
- 220623.605 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN2A
- Uniprot ID:
- Q99250
- Molecular Weight:
- 227972.64 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle.
- Gene Name:
- SCN4A
- Uniprot ID:
- P35499
- Molecular Weight:
- 208059.175 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in sa node cell action potential
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
- Gene Name:
- SCN5A
- Uniprot ID:
- Q14524
- Molecular Weight:
- 226937.475 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN7A
- Uniprot ID:
- Q01118
- Molecular Weight:
- 193491.605 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation.
- Gene Name:
- SCN8A
- Uniprot ID:
- Q9UQD0
- Molecular Weight:
- 225278.005 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in purkinje myocyte action potential
- Specific Function:
- Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.Isoform 2: Cell adhesion molecule that plays a critical role in neuronal migration and pathfinding during brain development. Stimulates neurite outgrowth.
- Gene Name:
- SCN1B
- Uniprot ID:
- Q07699
- Molecular Weight:
- 24706.955 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity).
- Gene Name:
- SCN2B
- Uniprot ID:
- O60939
- Molecular Weight:
- 24325.69 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity).
- Gene Name:
- SCN3B
- Uniprot ID:
- Q9NY72
- Molecular Weight:
- 24702.08 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom.
- Gene Name:
- SCN4B
- Uniprot ID:
- Q8IWT1
- Molecular Weight:
- 24968.755 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Signal transducer activity
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
- Gene Name:
- ATP2C1
- Uniprot ID:
- P98194
- Molecular Weight:
- 100576.42 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
- Gene Name:
- ESR2
- Uniprot ID:
- Q92731
- Molecular Weight:
- 59215.765 Da
References
- Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R: Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006 Aug 15;79(12):1160-9. Epub 2006 Mar 27. [16626760 ]
- General Function:
- S100 protein binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
- Gene Name:
- ATP2A2
- Uniprot ID:
- P16615
- Molecular Weight:
- 114755.765 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A3
- Uniprot ID:
- Q93084
- Molecular Weight:
- 113976.23 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
- Gene Name:
- PPARG
- Uniprot ID:
- P37231
- Molecular Weight:
- 57619.58 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Oxygen binding
- Specific Function:
- Catalyzes the formation of aromatic C18 estrogens from C19 androgens.
- Gene Name:
- CYP19A1
- Uniprot ID:
- P11511
- Molecular Weight:
- 57882.48 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
- Gene Name:
- ATP2C2
- Uniprot ID:
- O75185
- Molecular Weight:
- 103186.475 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
- Gene Name:
- NR1I2
- Uniprot ID:
- O75469
- Molecular Weight:
- 49761.245 Da
References
- Kretschmer XC, Baldwin WS: CAR and PXR: xenosensors of endocrine disrupters? Chem Biol Interact. 2005 Aug 15;155(3):111-28. [16054614 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN1A
- Uniprot ID:
- P35498
- Molecular Weight:
- 228969.49 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization.
- Gene Name:
- SCN11A
- Uniprot ID:
- Q9UI33
- Molecular Weight:
- 204919.66 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN3A
- Uniprot ID:
- Q9NY46
- Molecular Weight:
- 226291.905 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain (By similarity).
- Gene Name:
- SCN9A
- Uniprot ID:
- Q15858
- Molecular Weight:
- 226370.175 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
- Gene Name:
- ESR1
- Uniprot ID:
- P03372
- Molecular Weight:
- 66215.45 Da
References
- Lemaire G, Mnif W, Mauvais P, Balaguer P, Rahmani R: Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sci. 2006 Aug 15;79(12):1160-9. Epub 2006 Mar 27. [16626760 ]
- General Function:
- Protein homodimerization activity
- Specific Function:
- Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A1
- Uniprot ID:
- O14983
- Molecular Weight:
- 110251.36 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.