Fluvalinate
(right click,save link as to download,it is a temp file,please download as soon as possible, you can also use CTRL+S to save the whole html page)
Basic Info
Common Name | Fluvalinate(F04054) |
2D Structure | |
Description | Fluvalinate is a synthetic pyrethroid (type 1). It was developed in 1980 . It was originally introduced as the racemic mixture. The use of fluvalinate has been discontinued and replaced by tau-fluvalinate which is derived from one isomer (the R-form) of fluvalinate. A pyrethroid is a synthetic chemical compound similar to the natural chemical pyrethrins produced by the flowers of pyrethrums (Chrysanthemum cinerariaefolium and C. coccineum). Pyrethroids are common in commercial products such as household insecticides and insect repellents. In the concentrations used in such products, they are generally harmless to human beings but can harm sensitive individuals. They are usually broken apart by sunlight and the atmosphere in one or two days, and do not significantly affect groundwater quality except for being toxic to fish. (L811, L871, L857, L886) |
FRCD ID | F04054 |
CAS Number | 69409-94-5 |
PubChem CID | 50516 |
Formula | C26H22ClF3N2O3 |
IUPAC Name | [cyano-(3-phenoxyphenyl)methyl] 2-[2-chloro-4-(trifluoromethyl)anilino]-3-methylbutanoate |
InChI Key | INISTDXBRIBGOC-UHFFFAOYSA-N |
InChI | InChI=1S/C26H22ClF3N2O3/c1-16(2)24(32-22-12-11-18(14-21(22)27)26(28,29)30)25(33)35-23(15-31)17-7-6-10-20(13-17)34-19-8-4-3-5-9-19/h3-14,16,23-24,32H,1-2H3 |
Canonical SMILES | CC(C)C(C(=O)OC(C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)NC3=C(C=C(C=C3)C(F)(F)F)Cl |
Isomeric SMILES | CC(C)C(C(=O)OC(C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)NC3=C(C=C(C=C3)C(F)(F)F)Cl |
Synonyms | Minadox Mavrik 25EC FLUVALINATE Mavrik Apistan Kartan Mavrik aquaflow Klartan Mavrik HR Mavrik 2E |
Classifies | Pesticide |
Update Date | Nov 13, 2018 17:07 |
Chemical Taxonomy
Kingdom | Organic compounds |
Superclass | Benzenoids |
Class | Benzene and substituted derivatives |
Subclass | Diphenylethers |
Intermediate Tree Nodes | Not available |
Direct Parent | Diphenylethers |
Alternative Parents |
|
Molecular Framework | Aromatic homomonocyclic compounds |
Substituents | Alpha-amino acid ester - Diphenylether - Valine or derivatives - Diaryl ether - Alpha-amino acid or derivatives - Benzyloxycarbonyl - Trifluoromethylbenzene - Phenoxy compound - Phenol ether - Aniline or substituted anilines - Phenylalkylamine - Secondary aliphatic/aromatic amine - Fatty acid ester - Halobenzene - Chlorobenzene - Fatty acyl - Aryl halide - Aryl chloride - Amino acid or derivatives - Carboxylic acid ester - Secondary amine - Carboxylic acid derivative - Ether - Monocarboxylic acid or derivatives - Carbonitrile - Nitrile - Organofluoride - Organonitrogen compound - Organooxygen compound - Alkyl halide - Carbonyl group - Alkyl fluoride - Hydrocarbon derivative - Organic oxide - Organic nitrogen compound - Organochloride - Organohalogen compound - Organic oxygen compound - Amine - Organopnictogen compound - Aromatic homomonocyclic compound |
Description | This compound belongs to the class of organic compounds known as diphenylethers. These are aromatic compounds containing two benzene rings linked to each other through an ether group. |
Properties
Property Name | Property Value |
---|---|
Molecular Weight | 502.918 |
Hydrogen Bond Donor Count | 1 |
Hydrogen Bond Acceptor Count | 8 |
Rotatable Bond Count | 9 |
Complexity | 735 |
Monoisotopic Mass | 502.127 |
Exact Mass | 502.127 |
XLogP | 7.7 |
Formal Charge | 0 |
Heavy Atom Count | 35 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 2 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
References
Title | Journal | Date | Pubmed ID |
---|---|---|---|
Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. | Environ Pollut | 2018 Oct | 29803024 |
A survey of multiple pesticide residues in pollen and beebread collected inChina. | Sci Total Environ | 2018 Nov 1 | 30021322 |
Development and validation of modified QuEChERS method coupled with LC-MS/MS for simultaneous determination of cymiazole, fipronil, coumaphos, fluvalinate,amitraz, and its metabolite in various types of honey and royal jelly. | J Chromatogr B Analyt Technol Biomed Life Sci | 2018 Jan 1 | 29136552 |
Target vs non-target analysis to determine pesticide residues in fruits fromSaudi Arabia and influence in potential risk associated with exposure. | Food Chem Toxicol | 2018 Jan | 29109044 |
Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's AgriculturalEnvironment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen. | J Econ Entomol | 2017 Oct 1 | 28981672 |
Non-target evaluation of contaminants in honey bees and pollen samples by gaschromatography time-of-flight mass spectrometry. | Chemosphere | 2017 Oct | 28679151 |
Occurrence of pesticide residues in Spanish beeswax. | Sci Total Environ | 2017 Dec 15 | 28679118 |
Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA. | Spectrochim Acta A Mol Biomol Spectrosc | 2016 Feb 15 | 26571092 |
Rapid determination of residues of pesticides in honey by µGC-ECD and GC-MS/MS:Method validation and estimation of measurement uncertainty according to documentNo. SANCO/12571/2013. | J Environ Sci Health B | 2016 | 26671720 |
NEW INSIGHTS OF SIDE-EFFECTS OF TAU-FLUVALINATE ON BIOLOGICAL AGENTS AND POLLINATORS. | Commun Agric Appl Biol Sci | 2015 | 27145571 |
The impact of insecticides applied in apple orchards on the predatory miteKampimodromus aberrans (Acari: Phytoseiidae). | Exp Appl Acarol | 2014 Mar | 24114337 |
Four common pesticides, their mixtures and a formulation solvent in the hiveenvironment have high oral toxicity to honey bee larvae. | PLoS One | 2014 Jan 8 | 24416121 |
Pesticide residues in vegetable samples from the Andaman Islands, India. | Environ Monit Assess | 2013 Jul | 23208759 |
Acaricide, fungicide and drug interactions in honey bees (Apis mellifera). | PLoS One | 2013 | 23382869 |
Advantages of atmospheric pressure chemical ionization in gas chromatographytandem mass spectrometry: pyrethroid insecticides as a case study. | Anal Chem | 2012 Nov 20 | 23006011 |
Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera. | PLoS One | 2012 | 22319603 |
Development of an enzyme-linked immunosorbent assay based a monoclonal antibodyfor the detection of pyrethroids with phenoxybenzene multiresidue in river water. | J Agric Food Chem | 2011 Apr 13 | 21381771 |
High levels of miticides and agrochemicals in North American apiaries:implications for honey bee health. | PLoS One | 2010 Mar 19 | 20333298 |
Impact of the use of fluvalinate on different types of beeswax from Spanishhives. | Arch Environ Contam Toxicol | 2010 Apr | 19756841 |
Miticide residues in Virginia honeys. | Bull Environ Contam Toxicol | 2009 Dec | 19565169 |
Targets
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
- Gene Name:
- ATP2C2
- Uniprot ID:
- O75185
- Molecular Weight:
- 103186.475 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization.
- Gene Name:
- SCN11A
- Uniprot ID:
- Q9UI33
- Molecular Weight:
- 204919.66 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN3A
- Uniprot ID:
- Q9NY46
- Molecular Weight:
- 226291.905 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle.
- Gene Name:
- SCN4A
- Uniprot ID:
- P35499
- Molecular Weight:
- 208059.175 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN7A
- Uniprot ID:
- Q01118
- Molecular Weight:
- 193491.605 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation.
- Gene Name:
- SCN8A
- Uniprot ID:
- Q9UQD0
- Molecular Weight:
- 225278.005 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain (By similarity).
- Gene Name:
- SCN9A
- Uniprot ID:
- Q15858
- Molecular Weight:
- 226370.175 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in purkinje myocyte action potential
- Specific Function:
- Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.Isoform 2: Cell adhesion molecule that plays a critical role in neuronal migration and pathfinding during brain development. Stimulates neurite outgrowth.
- Gene Name:
- SCN1B
- Uniprot ID:
- Q07699
- Molecular Weight:
- 24706.955 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity).
- Gene Name:
- SCN3B
- Uniprot ID:
- Q9NY72
- Molecular Weight:
- 24702.08 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom.
- Gene Name:
- SCN4B
- Uniprot ID:
- Q8IWT1
- Molecular Weight:
- 24968.755 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Signal transducer activity
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
- Gene Name:
- ATP2C1
- Uniprot ID:
- P98194
- Molecular Weight:
- 100576.42 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Protein homodimerization activity
- Specific Function:
- Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A1
- Uniprot ID:
- O14983
- Molecular Weight:
- 110251.36 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- S100 protein binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
- Gene Name:
- ATP2A2
- Uniprot ID:
- P16615
- Molecular Weight:
- 114755.765 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Metal ion binding
- Specific Function:
- This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
- Gene Name:
- ATP2A3
- Uniprot ID:
- Q93084
- Molecular Weight:
- 113976.23 Da
- Mechanism of Action:
- This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
- Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN1A
- Uniprot ID:
- P35498
- Molecular Weight:
- 228969.49 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.
- Gene Name:
- SCN10A
- Uniprot ID:
- Q9Y5Y9
- Molecular Weight:
- 220623.605 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity
- Specific Function:
- Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
- Gene Name:
- SCN2A
- Uniprot ID:
- Q99250
- Molecular Weight:
- 227972.64 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in sa node cell action potential
- Specific Function:
- This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
- Gene Name:
- SCN5A
- Uniprot ID:
- Q14524
- Molecular Weight:
- 226937.475 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
- General Function:
- Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
- Specific Function:
- Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity).
- Gene Name:
- SCN2B
- Uniprot ID:
- O60939
- Molecular Weight:
- 24325.69 Da
- Mechanism of Action:
- This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
- Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]