Basic Info

Common NameFluvalinate(F04054)
2D Structure
Description

Fluvalinate is a synthetic pyrethroid (type 1). It was developed in 1980 . It was originally introduced as the racemic mixture. The use of fluvalinate has been discontinued and replaced by tau-fluvalinate which is derived from one isomer (the R-form) of fluvalinate. A pyrethroid is a synthetic chemical compound similar to the natural chemical pyrethrins produced by the flowers of pyrethrums (Chrysanthemum cinerariaefolium and C. coccineum). Pyrethroids are common in commercial products such as household insecticides and insect repellents. In the concentrations used in such products, they are generally harmless to human beings but can harm sensitive individuals. They are usually broken apart by sunlight and the atmosphere in one or two days, and do not significantly affect groundwater quality except for being toxic to fish. (L811, L871, L857, L886)

FRCD IDF04054
CAS Number69409-94-5
PubChem CID50516
FormulaC26H22ClF3N2O3
IUPAC Name

[cyano-(3-phenoxyphenyl)methyl] 2-[2-chloro-4-(trifluoromethyl)anilino]-3-methylbutanoate

InChI Key

INISTDXBRIBGOC-UHFFFAOYSA-N

InChI

InChI=1S/C26H22ClF3N2O3/c1-16(2)24(32-22-12-11-18(14-21(22)27)26(28,29)30)25(33)35-23(15-31)17-7-6-10-20(13-17)34-19-8-4-3-5-9-19/h3-14,16,23-24,32H,1-2H3

Canonical SMILES

CC(C)C(C(=O)OC(C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)NC3=C(C=C(C=C3)C(F)(F)F)Cl

Isomeric SMILES

CC(C)C(C(=O)OC(C#N)C1=CC(=CC=C1)OC2=CC=CC=C2)NC3=C(C=C(C=C3)C(F)(F)F)Cl

Synonyms
        
            Minadox
        
            Mavrik 25EC
        
            FLUVALINATE
        
            Mavrik
        
            Apistan
        
            Kartan
        
            Mavrik aquaflow
        
            Klartan
        
            Mavrik HR
        
            Mavrik 2E
        
Classifies
                

                  
                    Pesticide
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassBenzenoids
ClassBenzene and substituted derivatives
SubclassDiphenylethers
Intermediate Tree NodesNot available
Direct ParentDiphenylethers
Alternative Parents
Molecular FrameworkAromatic homomonocyclic compounds
SubstituentsAlpha-amino acid ester - Diphenylether - Valine or derivatives - Diaryl ether - Alpha-amino acid or derivatives - Benzyloxycarbonyl - Trifluoromethylbenzene - Phenoxy compound - Phenol ether - Aniline or substituted anilines - Phenylalkylamine - Secondary aliphatic/aromatic amine - Fatty acid ester - Halobenzene - Chlorobenzene - Fatty acyl - Aryl halide - Aryl chloride - Amino acid or derivatives - Carboxylic acid ester - Secondary amine - Carboxylic acid derivative - Ether - Monocarboxylic acid or derivatives - Carbonitrile - Nitrile - Organofluoride - Organonitrogen compound - Organooxygen compound - Alkyl halide - Carbonyl group - Alkyl fluoride - Hydrocarbon derivative - Organic oxide - Organic nitrogen compound - Organochloride - Organohalogen compound - Organic oxygen compound - Amine - Organopnictogen compound - Aromatic homomonocyclic compound
DescriptionThis compound belongs to the class of organic compounds known as diphenylethers. These are aromatic compounds containing two benzene rings linked to each other through an ether group.

Properties

Property NameProperty Value
Molecular Weight502.918
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count8
Rotatable Bond Count9
Complexity735
Monoisotopic Mass502.127
Exact Mass502.127
XLogP7.7
Formal Charge0
Heavy Atom Count35
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count2
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

References

TitleJournalDatePubmed ID
Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure.Environ Pollut2018 Oct29803024
A survey of multiple pesticide residues in pollen and beebread collected inChina.Sci Total Environ2018 Nov 130021322
Development and validation of modified QuEChERS method coupled with LC-MS/MS for simultaneous determination of cymiazole, fipronil, coumaphos, fluvalinate,amitraz, and its metabolite in various types of honey and royal jelly.J Chromatogr B Analyt Technol Biomed Life Sci2018 Jan 129136552
Target vs non-target analysis to determine pesticide residues in fruits fromSaudi Arabia and influence in potential risk associated with exposure.Food Chem Toxicol2018 Jan29109044
Revealing Pesticide Residues Under High Pesticide Stress in Taiwan's AgriculturalEnvironment Probed by Fresh Honey Bee (Hymenoptera: Apidae) Pollen.J Econ Entomol2017 Oct 128981672
Non-target evaluation of contaminants in honey bees and pollen samples by gaschromatography time-of-flight mass spectrometry.Chemosphere2017 Oct28679151
Occurrence of pesticide residues in Spanish beeswax.Sci Total Environ2017 Dec 1528679118
Deciphering the groove binding modes of tau-fluvalinate and flumethrin with calf thymus DNA.Spectrochim Acta A Mol Biomol Spectrosc2016 Feb 1526571092
Rapid determination of residues of pesticides in honey by µGC-ECD and GC-MS/MS:Method validation and estimation of measurement uncertainty according to documentNo. SANCO/12571/2013.J Environ Sci Health B201626671720
NEW INSIGHTS OF SIDE-EFFECTS OF TAU-FLUVALINATE ON BIOLOGICAL AGENTS AND POLLINATORS.Commun Agric Appl Biol Sci201527145571
The impact of insecticides applied in apple orchards on the predatory miteKampimodromus aberrans (Acari: Phytoseiidae).Exp Appl Acarol2014 Mar24114337
Four common pesticides, their mixtures and a formulation solvent in the hiveenvironment have high oral toxicity to honey bee larvae.PLoS One2014 Jan 824416121
Pesticide residues in vegetable samples from the Andaman Islands, India.Environ Monit Assess2013 Jul23208759
Acaricide, fungicide and drug interactions in honey bees (Apis mellifera).PLoS One201323382869
Advantages of atmospheric pressure chemical ionization in gas chromatographytandem mass spectrometry: pyrethroid insecticides as a case study.Anal Chem2012 Nov 2023006011
Ecologically appropriate xenobiotics induce cytochrome P450s in Apis mellifera.PLoS One201222319603
Development of an enzyme-linked immunosorbent assay based a monoclonal antibodyfor the detection of pyrethroids with phenoxybenzene multiresidue in river water.J Agric Food Chem2011 Apr 1321381771
High levels of miticides and agrochemicals in North American apiaries:implications for honey bee health.PLoS One2010 Mar 1920333298
Impact of the use of fluvalinate on different types of beeswax from Spanishhives.Arch Environ Contam Toxicol2010 Apr19756841
Miticide residues in Virginia honeys.Bull Environ Contam Toxicol2009 Dec19565169

Targets

General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
Mechanism of Action:
This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant sodium channel isoform. Also involved, with the contribution of the receptor tyrosine kinase NTRK2, in rapid BDNF-evoked neuronal depolarization.
Gene Name:
SCN11A
Uniprot ID:
Q9UI33
Molecular Weight:
204919.66 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN3A
Uniprot ID:
Q9NY46
Molecular Weight:
226291.905 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. This sodium channel may be present in both denervated and innervated skeletal muscle.
Gene Name:
SCN4A
Uniprot ID:
P35499
Molecular Weight:
208059.175 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN7A
Uniprot ID:
Q01118
Molecular Weight:
193491.605 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. In macrophages and melanoma cells, isoform 5 may participate in the control of podosome and invadopodia formation.
Gene Name:
SCN8A
Uniprot ID:
Q9UQD0
Molecular Weight:
225278.005 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-sensitive Na(+) channel isoform. Plays a role in pain mechanisms, especially in the development of inflammatory pain (By similarity).
Gene Name:
SCN9A
Uniprot ID:
Q15858
Molecular Weight:
226370.175 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity involved in purkinje myocyte action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-1 can modulate multiple alpha subunit isoforms from brain, skeletal muscle, and heart. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons.Isoform 2: Cell adhesion molecule that plays a critical role in neuronal migration and pathfinding during brain development. Stimulates neurite outgrowth.
Gene Name:
SCN1B
Uniprot ID:
Q07699
Molecular Weight:
24706.955 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes unique persistent sodium currents. Inactivates the sodium channel opening more slowly than the subunit beta-1. Its association with neurofascin may target the sodium channels to the nodes of Ranvier of developing axons and retain these channels at the nodes in mature myelinated axons (By similarity).
Gene Name:
SCN3B
Uniprot ID:
Q9NY72
Molecular Weight:
24702.08 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Modulates channel gating kinetics. Causes negative shifts in the voltage dependence of activation of certain alpha sodium channels, but does not affect the voltage dependence of inactivation. Modulates the suceptibility of the sodium channel to inhibition by toxic peptides from spider, scorpion, wasp and sea anemone venom.
Gene Name:
SCN4B
Uniprot ID:
Q8IWT1
Molecular Weight:
24968.755 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
Mechanism of Action:
This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
Mechanism of Action:
This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
Mechanism of Action:
This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
Mechanism of Action:
This pyrethroid inhibits Na+/K+ ATPase and Ca2+ and Mg2+ ATPase, which are essential for the transport of calcium across membranes. This results in the accumulation of intracellular free calcium ions, which promotes release of neurotransmitters from storage vesicles, the subsequent depolarization of adjacent neurons, and the propagation of stimuli throughout the central nervous system.
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN1A
Uniprot ID:
P35498
Molecular Weight:
228969.49 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Tetrodotoxin-resistant channel that mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which sodium ions may pass in accordance with their electrochemical gradient. Plays a role in neuropathic pain mechanisms.
Gene Name:
SCN10A
Uniprot ID:
Q9Y5Y9
Molecular Weight:
220623.605 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity
Specific Function:
Mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient.
Gene Name:
SCN2A
Uniprot ID:
Q99250
Molecular Weight:
227972.64 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity involved in sa node cell action potential
Specific Function:
This protein mediates the voltage-dependent sodium ion permeability of excitable membranes. Assuming opened or closed conformations in response to the voltage difference across the membrane, the protein forms a sodium-selective channel through which Na(+) ions may pass in accordance with their electrochemical gradient. It is a tetrodotoxin-resistant Na(+) channel isoform. This channel is responsible for the initial upstroke of the action potential. Channel inactivation is regulated by intracellular calcium levels.
Gene Name:
SCN5A
Uniprot ID:
Q14524
Molecular Weight:
226937.475 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]
General Function:
Voltage-gated sodium channel activity involved in cardiac muscle cell action potential
Specific Function:
Crucial in the assembly, expression, and functional modulation of the heterotrimeric complex of the sodium channel. The subunit beta-2 causes an increase in the plasma membrane surface area and in its folding into microvilli. Interacts with TNR may play a crucial role in clustering and regulation of activity of sodium channels at nodes of Ranvier (By similarity).
Gene Name:
SCN2B
Uniprot ID:
O60939
Molecular Weight:
24325.69 Da
Mechanism of Action:
This pyrethroid exerts its profound effect by prolonging the open phase of the sodium channel gates when a nerve cell is excited. This pyrethroid is a axonic poison that block the closing of the sodium gates in the nerves, and, thus, prolongs the return of the membrane potential to its resting state leading to hyperactivity of the nervous system which can result in paralysis and/or death. Type I Pyrethroid esters (lacking the alpha-cyano substituents) affect sodium channels in nerve membranes, causing repetitive (sensory, motor) neuronal discharge and a prolonged negative afterpotential, the effects being quite similar to those produced by DDT .
References
  1. Everts HB, Sundberg JP, Ong DE: Immunolocalization of retinoic acid biosynthesis systems in selected sites in rat. Exp Cell Res. 2005 Aug 15;308(2):309-19. [15950969 ]