Basic Info

Common NameTetrabutyltin(F04155)
2D Structure
Description

Tetrabutyltin is an organotin compound. It is the starting material of the tributyltin and dibutyltin compounds, which are used as stabilizers for PVC, biocides, fungicides, and anti-biofouling agents. Tin is a chemical element with the symbol Sn and atomic number 50. It is a natural component of the earth's crust and is obtained chiefly from the mineral cassiterite, where it occurs as tin dioxide. (L307, L309, L314)

FRCD IDF04155
CAS Number1461-25-2
PubChem CID15098
FormulaC16H36Sn
IUPAC Name

tetrabutylstannane

InChI Key

AFCAKJKUYFLYFK-UHFFFAOYSA-N

InChI

InChI=1S/4C4H9.Sn/c4*1-3-4-2;/h4*1,3-4H2,2H3;

Canonical SMILES

CCCC[Sn](CCCC)(CCCC)CCCC

Isomeric SMILES

CCCC[Sn](CCCC)(CCCC)CCCC

Synonyms
        
            Tetra-n-butylcin [Czech]
        
            Tetrabutylstannane
        
            TETRABUTYLTIN
        
            Tetra-n-butyltin
        
            1461-25-2
        
            Stannane, tetrabutyl-
        
            Tin, tetrabutyl-
        
            Tetra-N-butylcin
        
            UNII-QJ7Y5V377V
        
            CCRIS 6322
        
Classifies
                

                  
                    Pesticide
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassOrganometallic compounds
ClassOrgano-post-transition metal compounds
SubclassOrganotin compounds
Intermediate Tree NodesTetraorganotin compounds
Direct ParentTetraalkyltins
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsTetraalkyltin - Hydrocarbon derivative - Organic salt - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as tetraalkyltins. These are tetraorganotin compounds where the tin atom is linked to exactly four alkyl groups.

Properties

Property NameProperty Value
Molecular Weight347.174
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count0
Rotatable Bond Count12
Complexity116
Monoisotopic Mass348.184
Exact Mass348.184
Formal Charge0
Heavy Atom Count17
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

ADMET

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9714
Human Intestinal AbsorptionHIA+0.8731
Caco-2 PermeabilityCaco2+0.6812
P-glycoprotein SubstrateNon-substrate0.5556
P-glycoprotein InhibitorNon-inhibitor0.9196
Non-inhibitor0.7033
Renal Organic Cation TransporterNon-inhibitor0.8279
Distribution
Subcellular localizationLysosome0.6008
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8403
CYP450 2D6 SubstrateNon-substrate0.7871
CYP450 3A4 SubstrateNon-substrate0.6522
CYP450 1A2 InhibitorNon-inhibitor0.7853
CYP450 2C9 InhibitorNon-inhibitor0.8982
CYP450 2D6 InhibitorNon-inhibitor0.9310
CYP450 2C19 InhibitorNon-inhibitor0.8876
CYP450 3A4 InhibitorNon-inhibitor0.9567
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9172
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.8406
Non-inhibitor0.7873
AMES ToxicityNon AMES toxic0.9707
CarcinogensCarcinogens 0.7596
Fish ToxicityHigh FHMT0.9127
Tetrahymena Pyriformis ToxicityHigh TPT0.9845
Honey Bee ToxicityHigh HBT0.6931
BiodegradationNot ready biodegradable0.7343
Acute Oral ToxicityIII0.7141
Carcinogenicity (Three-class)Non-required0.5894

Model Value Unit
Absorption
Aqueous solubility-4.1362LogS
Caco-2 Permeability1.2684LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.0295LD50, mol/kg
Fish Toxicity0.9979pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.6490pIGC50, ug/L

Targets

General Function:
Zinc ion binding
Gene Name:
ADH1B
Uniprot ID:
P00325
Molecular Weight:
39854.21 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH1C
Uniprot ID:
P00326
Molecular Weight:
39867.27 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular Weight:
40221.335 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH1A
Uniprot ID:
P07327
Molecular Weight:
39858.37 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione.
Gene Name:
ADH5
Uniprot ID:
P11766
Molecular Weight:
39723.945 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis. Has a role in the survival of early spermatocytes at the beginning prophase of meiosis. In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes. In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Regulates expression of target genes in a ligand-dependent manner by recruiting chromatin complexes containing KMT2E/MLL5. Mediates retinoic acid-induced granulopoiesis.
Gene Name:
RARA
Uniprot ID:
P10276
Molecular Weight:
50770.805 Da
Mechanism of Action:
Organotins are endocrine disruptors and are believed to contribute to obesity by inappropriate activation of retinoic acid receptors, leading to adipocyte differentiation.
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence or presence of hormone ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function.
Gene Name:
RARB
Uniprot ID:
P10826
Molecular Weight:
50488.63 Da
Mechanism of Action:
Organotins are endocrine disruptors and are believed to contribute to obesity by inappropriate activation of retinoic acid receptors, leading to adipocyte differentiation.
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (By similarity). Specifically binds 9-cis retinoic acid (9C-RA).
Gene Name:
RXRB
Uniprot ID:
P28702
Molecular Weight:
56921.38 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Transcriptional regulator which is important for the differentiation and maintenance of meso-diencephalic dopaminergic (mdDA) neurons during development. It is crucial for expression of a set of genes such as SLC6A3, SLC18A2, TH and DRD2 which are essential for development of mdDA neurons (By similarity).
Gene Name:
NR4A2
Uniprot ID:
P43354
Molecular Weight:
66590.375 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
Gene Name:
PPARA
Uniprot ID:
Q07869
Molecular Weight:
52224.595 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Transcriptional activator activity, rna polymerase ii distal enhancer sequence-specific binding
Specific Function:
Transcription activator that binds to antioxidant response (ARE) elements in the promoter regions of target genes. Important for the coordinated up-regulation of genes in response to oxidative stress. May be involved in the transcriptional activation of genes of the beta-globin cluster by mediating enhancer activity of hypersensitive site 2 of the beta-globin locus control region.
Gene Name:
NFE2L2
Uniprot ID:
Q16236
Molecular Weight:
67825.9 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Gene Name:
ADH6
Uniprot ID:
P28332
Molecular Weight:
39088.335 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
Gene Name:
PPARG
Uniprot ID:
P37231
Molecular Weight:
57619.58 Da
Mechanism of Action:
Organotins are endocrine disruptors and are believed to contribute to obesity by inappropriate activation of peroxisome proliferator-activated receptor gamma, leading to adipocyte differentiation.
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Zinc ion binding
Specific Function:
Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism.
Gene Name:
ADH7
Uniprot ID:
P40394
Molecular Weight:
41480.985 Da
Mechanism of Action:
Inorganic and organic tin compounds are weak inhibitors of alcohol dehydrogenase.
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Threonine-type endopeptidase activity
Specific Function:
The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This unit is responsible of the chymotrypsin-like activity of the proteasome and is one of the principal target of the proteasome inhibitor bortezomib. May catalyze basal processing of intracellular antigens. Plays a role in the protection against oxidative damage through the Nrf2-ARE pathway (By similarity).
Gene Name:
PSMB5
Uniprot ID:
P28074
Molecular Weight:
28480.01 Da
Mechanism of Action:
Organotins inhibit the chymotrypsin-like activity of 20S and cellular proteasomes by binding to the beta-5 subunit. This results in apoptosis caused by downstream effects in the proteasome pathway.
References
  1. Shi G, Chen D, Zhai G, Chen MS, Cui QC, Zhou Q, He B, Dou QP, Jiang G: The proteasome is a molecular target of environmental toxic organotins. Environ Health Perspect. 2009 Mar;117(3):379-86. doi: 10.1289/ehp.11865. Epub 2008 Oct 23. [19337512 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. Required for limb bud development. In concert with RARA or RARB, required for skeletal growth, matrix homeostasis and growth plate function (By similarity).
Gene Name:
RARG
Uniprot ID:
P13631
Molecular Weight:
50341.405 Da
Mechanism of Action:
Organotins are endocrine disruptors and are believed to contribute to obesity by inappropriate activation of retinoic acid receptors, leading to adipocyte differentiation.
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity
Specific Function:
Transcriptional modulator activated by BMP (bone morphogenetic proteins) type 1 receptor kinase. SMAD1 is a receptor-regulated SMAD (R-SMAD). SMAD1/OAZ1/PSMB4 complex mediates the degradation of the CREBBP/EP300 repressor SNIP1. May act synergistically with SMAD4 and YY1 in bone morphogenetic protein (BMP)-mediated cardiac-specific gene expression.
Gene Name:
SMAD1
Uniprot ID:
Q15797
Molecular Weight:
52259.72 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]