Basic Info

Common NameMirtazapine(F04750)
2D Structure
Description

Mirtazapine is an antidepressant introduced by Organon International in 1996 used for the treatment of moderate to severe depression. Mirtazapine has a tetracyclic chemical structure and is classified as a noradrenergic and specific serotonergic antidepressant (NaSSA). It is the only tetracyclic antidepressant that has been approved by the Food and Drug Administration to treat depression.

FRCD IDF04750
CAS Number61337-67-5
PubChem CID4205
FormulaC17H19N3
IUPAC Name

None

InChI Key

RONZAEMNMFQXRA-UHFFFAOYSA-N

InChI

InChI=1S/C17H19N3/c1-19-9-10-20-16(12-19)15-7-3-2-5-13(15)11-14-6-4-8-18-17(14)20/h2-8,16H,9-12H2,1H3

Canonical SMILES

CN1CCN2C(C1)C3=CC=CC=C3CC4=C2N=CC=C4

Isomeric SMILES

CN1CCN2C(C1)C3=CC=CC=C3CC4=C2N=CC=C4

WikipediaMirtazapine
Synonyms
        
            6-Azamianserin
        
            mirtazapine
        
            Remeron
        
            85650-52-8
        
            Mepirzepine
        
            Remergil
        
            Zispin
        
            61337-67-5
        
            Remergon
        
            Rexer
        
Classifies
                

                  
                    Predicted: Pesticide
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassOrganoheterocyclic compounds
ClassPiperazinoazepines
SubclassNot available
Intermediate Tree NodesNot available
Direct ParentPiperazinoazepines
Alternative Parents
Molecular FrameworkAromatic heteropolycyclic compounds
SubstituentsBenzazepine - Piperazino-azepine - Dialkylarylamine - Azepine - N-methylpiperazine - N-alkylpiperazine - Aralkylamine - Imidolactam - Benzenoid - Pyridine - Piperazine - 1,4-diazinane - Heteroaromatic compound - Tertiary aliphatic amine - Tertiary amine - Azacycle - Amine - Organopnictogen compound - Organonitrogen compound - Organic nitrogen compound - Hydrocarbon derivative - Aromatic heteropolycyclic compound
DescriptionThis compound belongs to the class of organic compounds known as piperazinoazepines. These are compounds containing a piperazinoazepine skeleton, which consists of an azepine ring fused to a piperazine.

Properties

Property NameProperty Value
Molecular Weight265.36
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count3
Rotatable Bond Count0
Complexity345
Monoisotopic Mass265.158
Exact Mass265.158
XLogP3.3
Formal Charge0
Heavy Atom Count20
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count1
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

ADMET

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9855
Human Intestinal AbsorptionHIA+0.9873
Caco-2 PermeabilityCaco2+0.7283
P-glycoprotein SubstrateSubstrate0.8462
P-glycoprotein InhibitorInhibitor0.6148
Non-inhibitor0.8975
Renal Organic Cation TransporterInhibitor0.7956
Distribution
Subcellular localizationLysosome0.4860
Metabolism
CYP450 2C9 SubstrateNon-substrate0.7988
CYP450 2D6 SubstrateSubstrate0.7894
CYP450 3A4 SubstrateNon-substrate0.5148
CYP450 1A2 InhibitorInhibitor0.8503
CYP450 2C9 InhibitorNon-inhibitor0.6675
CYP450 2D6 InhibitorInhibitor0.7222
CYP450 2C19 InhibitorNon-inhibitor0.6206
CYP450 3A4 InhibitorNon-inhibitor0.8309
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.6031
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.7532
Inhibitor0.7455
AMES ToxicityNon AMES toxic0.8079
CarcinogensNon-carcinogens0.9742
Fish ToxicityHigh FHMT0.5607
Tetrahymena Pyriformis ToxicityHigh TPT0.9288
Honey Bee ToxicityLow HBT0.8638
BiodegradationNot ready biodegradable0.9919
Acute Oral ToxicityIII0.8137
Carcinogenicity (Three-class)Non-required0.7321

Model Value Unit
Absorption
Aqueous solubility-2.6755LogS
Caco-2 Permeability1.4390LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.5197LD50, mol/kg
Fish Toxicity1.9179pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.7129pIGC50, ug/L

References

TitleJournalDatePubmed ID
Drug exposure and clinical effect of transdermal mirtazapine in healthy youngcats: a pilot study.J Feline Med Surg2017 Oct27613493
Functional dyspepsia: new insights into pathogenesis and therapy.Korean J Intern Med2016 May27048251
Combined treatment with subchronic lithium and acute intracerebral mirtazapinemicroinjection into the median raphe nucleus exerted an anxiolytic-like effectsynergistically.Eur J Pharmacol2016 Jul 1527154172
Pharmacological appetite stimulation: rational choices in the inappetent cat.J Feline Med Surg2014 Sep25146662
Pharmacologic management of human immunodeficiency virus wasting syndrome.Pharmacotherapy2014 Aug24782295
[Functional and motor digestive disorders].Gastroenterol Hepatol2013 Oct24160947
Increased Cdk5/p35 activity in the dentate gyrus mediates depressive-likebehaviour in rats.Int J Neuropsychopharmacol2012 Jul21682945
Headache (chronic tension-type).BMJ Clin Evid2009 Jul 2221696647
Headache (chronic tension-type).BMJ Clin Evid2007 Jan 119454042

Targets

General Function:
Virus receptor activity
Specific Function:
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates phospholipase C and a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and promotes the release of Ca(2+) ions from intracellular stores. Affects neural activity, perception, cognition and mood. Plays a role in the regulation of behavior, including responses to anxiogenic situations and psychoactive substances. Plays a role in intestinal smooth muscle contraction, and may play a role in arterial vasoconstriction.(Microbial infection) Acts as a receptor for human JC polyomavirus/JCPyV.
Gene Name:
HTR2A
Uniprot ID:
P28223
Molecular Weight:
52602.58 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Gorman JM: Mirtazapine: clinical overview. J Clin Psychiatry. 1999;60 Suppl 17:9-13; discussion 46-8. [10446735 ]
General Function:
Serotonin receptor activity
Specific Function:
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including ergot alkaloid derivatives, 1-2,5,-dimethoxy-4-iodophenyl-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Regulates neuronal activity via the activation of short transient receptor potential calcium channels in the brain, and thereby modulates the activation of pro-opiomelacortin neurons and the release of CRH that then regulates the release of corticosterone. Plays a role in the regulation of appetite and eating behavior, responses to anxiogenic stimuli and stress. Plays a role in insulin sensitivity and glucose homeostasis.
Gene Name:
HTR2C
Uniprot ID:
P28335
Molecular Weight:
51820.705 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Benelli A, Frigeri C, Bertolini A, Genedani S: Influence of mirtazapine on the sexual behavior of male rats. Psychopharmacology (Berl). 2004 Jan;171(3):250-8. Epub 2003 Nov 13. [14615872 ]
General Function:
Histamine receptor activity
Specific Function:
The H3 subclass of histamine receptors could mediate the histamine signals in CNS and peripheral nervous system. Signals through the inhibition of adenylate cyclase and displays high constitutive activity (spontaneous activity in the absence of agonist). Agonist stimulation of isoform 3 neither modified adenylate cyclase activity nor induced intracellular calcium mobilization.
Gene Name:
HRH3
Uniprot ID:
Q9Y5N1
Molecular Weight:
48670.81 Da
References
  1. Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F: Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000 Mar;12(3):1079-95. [10762339 ]
Uniprot ID:
P35348; P35368; P25100
References
  1. Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA: Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005 Mar 24;48(6):1709-12. [15771415 ]
General Function:
Protein homodimerization activity
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins.
Gene Name:
ADRA2C
Uniprot ID:
P18825
Molecular Weight:
49521.585 Da
References
  1. Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA: Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005 Mar 24;48(6):1709-12. [15771415 ]
Uniprot ID:
P21728; P21918
References
  1. de Boer T: The effects of mirtazapine on central noradrenergic and serotonergic neurotransmission. Int Clin Psychopharmacol. 1995 Dec;10 Suppl 4:19-23. [8930006 ]
General Function:
Potassium channel regulator activity
Specific Function:
Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase.
Gene Name:
DRD2
Uniprot ID:
P14416
Molecular Weight:
50618.91 Da
References
  1. Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA: Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005 Mar 24;48(6):1709-12. [15771415 ]
General Function:
G-protein coupled amine receptor activity
Specific Function:
Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase. Promotes cell proliferation.
Gene Name:
DRD3
Uniprot ID:
P35462
Molecular Weight:
44224.335 Da
References
  1. Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA: Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005 Mar 24;48(6):1709-12. [15771415 ]
General Function:
Serotonin receptor activity
Specific Function:
This is one of the several different receptors for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. The activity of this receptor is mediated by G proteins that stimulate adenylate cyclase.
Gene Name:
HTR7
Uniprot ID:
P34969
Molecular Weight:
53554.43 Da
References
  1. Fernandez J, Alonso JM, Andres JI, Cid JM, Diaz A, Iturrino L, Gil P, Megens A, Sipido VK, Trabanco AA: Discovery of new tetracyclic tetrahydrofuran derivatives as potential broad-spectrum psychotropic agents. J Med Chem. 2005 Mar 24;48(6):1709-12. [15771415 ]
General Function:
Monoamine transmembrane transporter activity
Specific Function:
Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals.
Gene Name:
SLC6A3
Uniprot ID:
Q01959
Molecular Weight:
68494.255 Da
References
  1. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [9537821 ]
General Function:
Norepinephrine:sodium symporter activity
Specific Function:
Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals.
Gene Name:
SLC6A2
Uniprot ID:
P23975
Molecular Weight:
69331.42 Da
References
  1. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [9537821 ]
General Function:
Serotonin:sodium symporter activity
Specific Function:
Serotonin transporter whose primary function in the central nervous system involves the regulation of serotonergic signaling via transport of serotonin molecules from the synaptic cleft back into the pre-synaptic terminal for re-utilization. Plays a key role in mediating regulation of the availability of serotonin to other receptors of serotonergic systems. Terminates the action of serotonin and recycles it in a sodium-dependent manner.
Gene Name:
SLC6A4
Uniprot ID:
P31645
Molecular Weight:
70324.165 Da
References
  1. Tatsumi M, Groshan K, Blakely RD, Richelson E: Pharmacological profile of antidepressants and related compounds at human monoamine transporters. Eur J Pharmacol. 1997 Dec 11;340(2-3):249-58. [9537821 ]
General Function:
Epinephrine binding
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is clonidine > norepinephrine > epinephrine = oxymetazoline > dopamine > p-tyramine = phenylephrine > serotonin > p-synephrine / p-octopamine. For antagonists, the rank order is yohimbine > chlorpromazine > phentolamine > mianserine > spiperone > prazosin > alprenolol > propanolol > pindolol.
Gene Name:
ADRA2B
Uniprot ID:
P18089
Molecular Weight:
49565.8 Da
References
  1. Kennis LE, Bischoff FP, Mertens CJ, Love CJ, Van den Keybus FA, Pieters S, Braeken M, Megens AA, Leysen JE: New 2-substituted 1,2,3,4-tetrahydrobenzofuro[3,2-c]pyridine having highly active and potent central alpha 2-antagonistic activity as potential antidepressants. Bioorg Med Chem Lett. 2000 Jan 3;10(1):71-4. [10636247 ]
General Function:
Receptor signaling protein activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling.
Gene Name:
ADRB1
Uniprot ID:
P08588
Molecular Weight:
51322.1 Da
References
  1. Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F: Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000 Mar;12(3):1079-95. [10762339 ]
General Function:
Protein homodimerization activity
Specific Function:
Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30-fold greater affinity than it does norepinephrine.
Gene Name:
ADRB2
Uniprot ID:
P07550
Molecular Weight:
46458.32 Da
References
  1. Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F: Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000 Mar;12(3):1079-95. [10762339 ]
General Function:
Sh3 domain binding
Specific Function:
Dopamine receptor responsible for neuronal signaling in the mesolimbic system of the brain, an area of the brain that regulates emotion and complex behavior. Its activity is mediated by G proteins which inhibit adenylyl cyclase. Modulates the circadian rhythm of contrast sensitivity by regulating the rhythmic expression of NPAS2 in the retinal ganglion cells (By similarity).
Gene Name:
DRD4
Uniprot ID:
P21917
Molecular Weight:
48359.86 Da
References
  1. Wikstrom HV, Mensonides-Harsema MM, Cremers TI, Moltzen EK, Arnt J: Synthesis and pharmacological testing of 1,2,3,4,10,14b-hexahydro-6-methoxy-2-methyldibenzo[c,f]pyrazino[1,2-a]azepin and its enantiomers in comparison with the two antidepressants mianserin and mirtazapine. J Med Chem. 2002 Jul 18;45(15):3280-5. [12109911 ]
General Function:
Serotonin receptor activity
Specific Function:
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second messenger system that regulates the release of Ca(2+) ions from intracellular stores. Plays a role in the regulation of 5-hydroxytryptamine release and in the regulation of dopamine and 5-hydroxytryptamine metabolism. Plays a role in the regulation of dopamine and 5-hydroxytryptamine levels in the brain, and thereby affects neural activity, mood and behavior. Plays a role in the response to anxiogenic stimuli.
Gene Name:
HTR1A
Uniprot ID:
P08908
Molecular Weight:
46106.335 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Schreiber S, Bleich A, Pick CG: Venlafaxine and mirtazapine: different mechanisms of antidepressant action, common opioid-mediated antinociceptive effects--a possible opioid involvement in severe depression? J Mol Neurosci. 2002 Feb-Apr;18(1-2):143-9. [11931344 ]
General Function:
Voltage-gated potassium channel activity
Specific Function:
This is one of the several different receptors for 5-hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand-gated ion channel, which when activated causes fast, depolarizing responses in neurons. It is a cation-specific, but otherwise relatively nonselective, ion channel.
Gene Name:
HTR3A
Uniprot ID:
P46098
Molecular Weight:
55279.835 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General Function:
Serotonin receptor activity
Specific Function:
G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various ergot alkaloid derivatives and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Plays a role in the regulation of dopamine and 5-hydroxytryptamine release, 5-hydroxytryptamine uptake and in the regulation of extracellular dopamine and 5-hydroxytryptamine levels, and thereby affects neural activity. May play a role in the perception of pain. Plays a role in the regulation of behavior, including impulsive behavior. Required for normal proliferation of embryonic cardiac myocytes and normal heart development. Protects cardiomyocytes against apoptosis. Plays a role in the adaptation of pulmonary arteries to chronic hypoxia. Plays a role in vasoconstriction. Required for normal osteoblast function and proliferation, and for maintaining normal bone density. Required for normal proliferation of the interstitial cells of Cajal in the intestine.
Gene Name:
HTR2B
Uniprot ID:
P41595
Molecular Weight:
54297.41 Da
References
  1. Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F: Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000 Mar;12(3):1079-95. [10762339 ]
General Function:
Thioesterase binding
Specific Function:
Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol.
Gene Name:
ADRA2A
Uniprot ID:
P08913
Molecular Weight:
48956.275 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Garcia-Sevilla JA, Ventayol P, Perez V, Rubovszky G, Puigdemont D, Ferrer-Alcon M, Andreoli A, Guimon J, Alvarez E: Regulation of platelet alpha 2A-adrenoceptors, Gi proteins and receptor kinases in major depression: effects of mirtazapine treatment. Neuropsychopharmacology. 2004 Mar;29(3):580-8. [14628003 ]
General Function:
Protein heterodimerization activity
Specific Function:
This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes.
Gene Name:
ADRA1A
Uniprot ID:
P35348
Molecular Weight:
51486.005 Da
References
  1. Millan MJ, Gobert A, Rivet JM, Adhumeau-Auclair A, Cussac D, Newman-Tancredi A, Dekeyne A, Nicolas JP, Lejeune F: Mirtazapine enhances frontocortical dopaminergic and corticolimbic adrenergic, but not serotonergic, transmission by blockade of alpha2-adrenergic and serotonin2C receptors: a comparison with citalopram. Eur J Neurosci. 2000 Mar;12(3):1079-95. [10762339 ]
General Function:
Histamine receptor activity
Specific Function:
In peripheral tissues, the H1 subclass of histamine receptors mediates the contraction of smooth muscles, increase in capillary permeability due to contraction of terminal venules, and catecholamine release from adrenal medulla, as well as mediating neurotransmission in the central nervous system.
Gene Name:
HRH1
Uniprot ID:
P35367
Molecular Weight:
55783.61 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Chen X, Ji ZL, Chen YZ: TTD: Therapeutic Target Database. Nucleic Acids Res. 2002 Jan 1;30(1):412-5. [11752352 ]
General Function:
Opioid receptor activity
Specific Function:
G-protein coupled opioid receptor that functions as receptor for endogenous alpha-neoendorphins and dynorphins, but has low affinity for beta-endorphins. Also functions as receptor for various synthetic opioids and for the psychoactive diterpene salvinorin A. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling leads to the inhibition of adenylate cyclase activity. Inhibits neurotransmitter release by reducing calcium ion currents and increasing potassium ion conductance. Plays a role in the perception of pain. Plays a role in mediating reduced physical activity upon treatment with synthetic opioids. Plays a role in the regulation of salivation in response to synthetic opioids. May play a role in arousal and regulation of autonomic and neuroendocrine functions.
Gene Name:
OPRK1
Uniprot ID:
P41145
Molecular Weight:
42644.665 Da
Mechanism of Action:
Mirtazapine acts as an antagonist at central pre-synaptic alpha(2)-receptors, inhibiting negative feedback to the presynaptic nerve and causing an increase in NE release. Blockade of heteroreceptors, alpha(2)-receptors contained in serotenergic neurons, enhances the release of 5-HT, increasing the interactions between 5-HT and 5-HT<sub>1</sub> receptors and contributing to the anxiolytic effects of mirtazapine. Mirtazapine also acts as a weak antagonist at 5-HT<sub>1</sub> receptors and as a potent antagonist at 5-HT<sub>2</sub> (particularly subtypes 2A and 2C) and 5-HT<sub>3</sub> receptors. Blockade of these receptors may explain the lower incidence of adverse effects such as anxiety, insomnia, and nausea. Mirtazapine also exhibits significant antagonism at H1-receptors, resulting in sedation. Mirtazapine has no effects on the reuptake of either NE or 5-HT and has only minimal activity at dopaminergic and muscarinic receptors.
References
  1. Schreiber S, Rigai T, Katz Y, Pick CG: The antinociceptive effect of mirtazapine in mice is mediated through serotonergic, noradrenergic and opioid mechanisms. Brain Res Bull. 2002 Sep 30;58(6):601-5. [12372565 ]