Isobutane
(right click,save link as to download,it is a temp file,please download as soon as possible, you can also use CTRL+S to save the whole html page)
Basic Info
Common Name | Isobutane(F04829) |
2D Structure | |
Description | Isobutane is a hydrocarbon and one of two isomers of butane. Butanes are highly flammable, colorless, odorless, easily liquefied gases. They are components of gasoline and can also be used as refrigerants and propellants in aerosol sprays. Butane gas is sold bottled as a fuel for cooking and camping and is also found in cigarette lighters. Butane is a simple asphyxiant and commonly used substance of abuse that is responsible for a large number of "solvent related" deaths. (L1283, L1284) |
FRCD ID | F04829 |
CAS Number | 75-28-5 |
PubChem CID | 6360 |
Formula | C4H10 |
IUPAC Name | 2-methylpropane |
InChI Key | NNPPMTNAJDCUHE-UHFFFAOYSA-N |
InChI | InChI=1S/C4H10/c1-4(2)3/h4H,1-3H3 |
Canonical SMILES | CC(C)C |
Isomeric SMILES | CC(C)C |
Wikipedia | Isobutane |
Synonyms | Trimethylmethane ISOBUTANE 2-Methylpropane Propane, 2-methyl- 75-28-5 1,1-Dimethylethane iso-butane A 31 (hydrocarbon) Caswell No. 503A R 600a |
Classifies | Predicted: Pollutant |
Update Date | Nov 13, 2018 17:07 |
Chemical Taxonomy
Kingdom | Organic compounds |
Superclass | Hydrocarbons |
Class | Saturated hydrocarbons |
Subclass | Alkanes |
Intermediate Tree Nodes | Not available |
Direct Parent | Branched alkanes |
Alternative Parents | |
Molecular Framework | Aliphatic acyclic compounds |
Substituents | Branched alkane - Aliphatic acyclic compound |
Description | This compound belongs to the class of organic compounds known as branched alkanes. These are acyclic branched hydrocarbons having the general formula CnH2n+2. |
Properties
Property Name | Property Value |
---|---|
Molecular Weight | 58.124 |
Hydrogen Bond Donor Count | 0 |
Hydrogen Bond Acceptor Count | 0 |
Rotatable Bond Count | 0 |
Complexity | 4.8 |
Monoisotopic Mass | 58.078 |
Exact Mass | 58.078 |
XLogP | 2.1 |
Formal Charge | 0 |
Heavy Atom Count | 4 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
ADMET
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9736 |
Human Intestinal Absorption | HIA+ | 0.9903 |
Caco-2 Permeability | Caco2+ | 0.7221 |
P-glycoprotein Substrate | Non-substrate | 0.8247 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.9585 |
Non-inhibitor | 0.9773 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.9319 |
Distribution | ||
Subcellular localization | Lysosome | 0.6147 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.8145 |
CYP450 2D6 Substrate | Non-substrate | 0.7966 |
CYP450 3A4 Substrate | Non-substrate | 0.6943 |
CYP450 1A2 Inhibitor | Non-inhibitor | 0.9149 |
CYP450 2C9 Inhibitor | Non-inhibitor | 0.9547 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.9599 |
CYP450 2C19 Inhibitor | Non-inhibitor | 0.9714 |
CYP450 3A4 Inhibitor | Non-inhibitor | 0.9792 |
CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.9130 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.9706 |
Non-inhibitor | 0.9550 | |
AMES Toxicity | Non AMES toxic | 0.9536 |
Carcinogens | Carcinogens | 0.7625 |
Fish Toxicity | High FHMT | 0.6027 |
Tetrahymena Pyriformis Toxicity | Low TPT | 0.7051 |
Honey Bee Toxicity | High HBT | 0.8553 |
Biodegradation | Not ready biodegradable | 0.5912 |
Acute Oral Toxicity | III | 0.6724 |
Carcinogenicity (Three-class) | Warning | 0.4959 |
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -2.4991 | LogS |
Caco-2 Permeability | 1.6096 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 1.3424 | LD50, mol/kg |
Fish Toxicity | 1.7600 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | -0.6967 | pIGC50, ug/L |
References
Title | Journal | Date | Pubmed ID |
---|---|---|---|
Determination of eight trichothecenes by gas chromatography-mass spectrometry after sample clean-up by a two-stage solid-phase extraction. | J Chromatogr A | 1998 Jul 31 | 9718712 |
Identification of aflatoxins by quadrupole mass spectrometry/mass spectrometry. | J Assoc Off Anal Chem | 1984 Jul-Aug | 6469905 |
Negative chemical ionization studied of human and food chain contamination with xenobiotic chemicals. | Environ Health Perspect | 1980 Jun | 7428739 |
Targets
- General Function:
- Channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNG
- Uniprot ID:
- P07510
- Molecular Weight:
- 57882.8 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Acetylcholine-activated cation-selective channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRND
- Uniprot ID:
- Q07001
- Molecular Weight:
- 58894.55 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Cation transmembrane transporter activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNE
- Uniprot ID:
- Q04844
- Molecular Weight:
- 54696.54 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Zinc ion binding
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. Its phosphorylation at Ser-1303 by DAPK1 enhances synaptic NMDA receptor channel activity inducing injurious Ca2+ influx through them, resulting in an irreversible neuronal death (By similarity).
- Gene Name:
- GRIN2B
- Uniprot ID:
- Q13224
- Molecular Weight:
- 166365.885 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Nmda glutamate receptor activity
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine.
- Gene Name:
- GRIN2C
- Uniprot ID:
- Q14957
- Molecular Weight:
- 134207.77 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNB1
- Uniprot ID:
- P11230
- Molecular Weight:
- 56697.9 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Zinc ion binding
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Activation requires binding of agonist to both types of subunits.
- Gene Name:
- GRIN2A
- Uniprot ID:
- Q12879
- Molecular Weight:
- 165281.215 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Nmda glutamate receptor activity
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine.
- Gene Name:
- GRIN2D
- Uniprot ID:
- O15399
- Molecular Weight:
- 143750.685 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Protein phosphatase 2a binding
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May play a role in PPP2CB-NMDAR mediated signaling mechanism (By similarity).
- Gene Name:
- GRIN3A
- Uniprot ID:
- Q8TCU5
- Molecular Weight:
- 125464.07 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Nmda glutamate receptor activity
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine.
- Gene Name:
- GRIN3B
- Uniprot ID:
- O60391
- Molecular Weight:
- 112990.98 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Transmitter-gated ion channel activity
- Specific Function:
- The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
- Gene Name:
- GLRA1
- Uniprot ID:
- P23415
- Molecular Weight:
- 52623.35 Da
- Mechanism of Action:
- Butane binds to and enhances the activity of glycine receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Transmitter-gated ion channel activity
- Specific Function:
- The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
- Gene Name:
- GLRA2
- Uniprot ID:
- P23416
- Molecular Weight:
- 52001.585 Da
- Mechanism of Action:
- Butane binds to and enhances the activity of glycine receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Transmitter-gated ion channel activity
- Specific Function:
- The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
- Gene Name:
- GLRA3
- Uniprot ID:
- O75311
- Molecular Weight:
- 53799.775 Da
- Mechanism of Action:
- Butane binds to and enhances the activity of glycine receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Glycine binding
- Specific Function:
- The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
- Gene Name:
- GLRB
- Uniprot ID:
- P48167
- Molecular Weight:
- 56121.62 Da
- Mechanism of Action:
- Butane binds to and enhances the activity of glycine receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Receptor binding
- Specific Function:
- Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reducing the range of dynamic hearing. This may protect against acoustic trauma.
- Gene Name:
- CHRNA10
- Uniprot ID:
- Q9GZZ6
- Molecular Weight:
- 49704.295 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Drug binding
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNA2
- Uniprot ID:
- Q15822
- Molecular Weight:
- 59764.82 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNA3
- Uniprot ID:
- P32297
- Molecular Weight:
- 57479.54 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions.
- Gene Name:
- CHRNA4
- Uniprot ID:
- P43681
- Molecular Weight:
- 69956.47 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNA5
- Uniprot ID:
- P30532
- Molecular Weight:
- 53053.965 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Acetylcholine-activated cation-selective channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNA6
- Uniprot ID:
- Q15825
- Molecular Weight:
- 56897.745 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Toxic substance binding
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin.
- Gene Name:
- CHRNA7
- Uniprot ID:
- P36544
- Molecular Weight:
- 56448.925 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Drug binding
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNB3
- Uniprot ID:
- Q05901
- Molecular Weight:
- 52728.215 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNB4
- Uniprot ID:
- P30926
- Molecular Weight:
- 56378.985 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane.
- Gene Name:
- CHRNA1
- Uniprot ID:
- P02708
- Molecular Weight:
- 54545.235 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Voltage-gated cation channel activity
- Specific Function:
- NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine. This protein plays a key role in synaptic plasticity, synaptogenesis, excitotoxicity, memory acquisition and learning. It mediates neuronal functions in glutamate neurotransmission. Is involved in the cell surface targeting of NMDA receptors (By similarity).
- Gene Name:
- GRIN1
- Uniprot ID:
- Q05586
- Molecular Weight:
- 105371.945 Da
- Mechanism of Action:
- Butane inhibits the activity of N-methyl-d-aspartate (NMDA) receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Transmitter-gated ion channel activity
- Specific Function:
- The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
- Gene Name:
- GLRA4
- Uniprot ID:
- Q5JXX5
- Molecular Weight:
- 47727.92 Da
- Mechanism of Action:
- Butane binds to and enhances the activity of glycine receptors, resulting in anesthetic effects.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Calcium channel activity
- Specific Function:
- Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding induces a conformation change that leads to the opening of an ion-conducting channel across the plasma membrane (PubMed:11752216, PubMed:25282151). The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane (PubMed:11752216, PubMed:25282151). In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reducing the range of dynamic hearing. This may protect against acoustic trauma. May also regulate keratinocyte adhesion (PubMed:11021840).
- Gene Name:
- CHRNA9
- Uniprot ID:
- Q9UGM1
- Molecular Weight:
- 54806.63 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]
- General Function:
- Ligand-gated ion channel activity
- Specific Function:
- After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions.
- Gene Name:
- CHRNB2
- Uniprot ID:
- P17787
- Molecular Weight:
- 57018.575 Da
- Mechanism of Action:
- Butane inhibits nicotinic acetylcholine receptors.
References
- Hara K, Eger EI 2nd, Laster MJ, Harris RA: Nonhalogenated alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: differential actions on GABAA and glycine receptors. Anesthesiology. 2002 Dec;97(6):1512-20. [12459679 ]