Basic Info

Common Name2-Nitrophenol(F04862)
2D Structure
Description

2-Nitrophenol is a phenolic compound that is used mainly to make dyes, paint coloring, rubber chemicals, and substances that kill molds. (L1661)

FRCD IDF04862
CAS Number88-75-5
PubChem CID6947
FormulaC6H5NO3
IUPAC Name

2-nitrophenol

InChI Key

IQUPABOKLQSFBK-UHFFFAOYSA-N

InChI

InChI=1S/C6H5NO3/c8-6-4-2-1-3-5(6)7(9)10/h1-4,8H

Canonical SMILES

C1=CC=C(C(=C1)[N+](=O)[O-])O

Isomeric SMILES

C1=CC=C(C(=C1)[N+](=O)[O-])O

Synonyms
        
            2-Hydroxynitrobenzene
        
            2-NITROPHENOL
        
            o-Nitrophenol
        
            88-75-5
        
            Phenol, 2-nitro-
        
            o-Hydroxynitrobenzene
        
            Phenol, o-nitro-
        
            NITROPHENOL
        
            o-Nitrofenol
        
            ortho-nitrophenol
        
Classifies
                

                  
                    Pollutant
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassBenzenoids
ClassPhenols
SubclassNitrophenols
Intermediate Tree NodesNot available
Direct ParentNitrophenols
Alternative Parents
Molecular FrameworkAromatic homomonocyclic compounds
SubstituentsNitrophenol - Nitrobenzene - Nitroaromatic compound - 1-hydroxy-4-unsubstituted benzenoid - 1-hydroxy-2-unsubstituted benzenoid - Monocyclic benzene moiety - C-nitro compound - Organic nitro compound - Organic oxoazanium - Allyl-type 1,3-dipolar organic compound - Propargyl-type 1,3-dipolar organic compound - Organic 1,3-dipolar compound - Organooxygen compound - Organonitrogen compound - Organic oxide - Organic nitrogen compound - Organic oxygen compound - Organopnictogen compound - Hydrocarbon derivative - Aromatic homomonocyclic compound
DescriptionThis compound belongs to the class of organic compounds known as nitrophenols. These are compounds containing a nitrophenol moiety, which consists of a benzene ring bearing both a hydroxyl group and a nitro group on two different ring carbon atoms.

Properties

Property NameProperty Value
Molecular Weight139.11
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count3
Rotatable Bond Count0
Complexity131
Monoisotopic Mass139.027
Exact Mass139.027
XLogP1.8
Formal Charge0
Heavy Atom Count10
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

Targets

General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBA1
Uniprot ID:
P69905
Molecular Weight:
15257.405 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.LVV-hemorphin-7 potentiates the activity of bradykinin, causing a decrease in blood pressure.Spinorphin: functions as an endogenous inhibitor of enkephalin-degrading enzymes such as DPP3, and as a selective antagonist of the P2RX3 receptor which is involved in pain signaling, these properties implicate it as a regulator of pain and inflammation.
Gene Name:
HBB
Uniprot ID:
P68871
Molecular Weight:
15998.34 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Specific Function:
The epsilon chain is a beta-type chain of early mammalian embryonic hemoglobin.
Gene Name:
HBE1
Uniprot ID:
P02100
Molecular Weight:
16202.71 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Specific Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Gene Name:
HBG1
Uniprot ID:
P69891
Molecular Weight:
16140.37 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Gamma chains make up the fetal hemoglobin F, in combination with alpha chains.
Specific Function:
Heme binding
Gene Name:
HBG2
Uniprot ID:
P69892
Molecular Weight:
16126.35 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Gene Name:
HBM
Uniprot ID:
Q6B0K9
Molecular Weight:
15617.97 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Gene Name:
HBQ1
Uniprot ID:
P09105
Molecular Weight:
15507.575 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Specific Function:
The zeta chain is an alpha-type chain of mammalian embryonic hemoglobin.
Gene Name:
HBZ
Uniprot ID:
P02008
Molecular Weight:
15636.845 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Oxygen transporter activity
Specific Function:
Involved in oxygen transport from the lung to the various peripheral tissues.
Gene Name:
HBD
Uniprot ID:
P02042
Molecular Weight:
16055.41 Da
Mechanism of Action:
The nitrite in nitrophenols causes the autocatalytic oxidation of oxyhemoglobin to hydrogen peroxide and methemoglobin. This elevation of methemoglobin levels is a condition known as methemoglobinemia, and is characterized by tissue hypoxia, as methemoglobin cannot bind oxygen.
References
  1. Keszler A, Piknova B, Schechter AN, Hogg N: The reaction between nitrite and oxyhemoglobin: a mechanistic study. J Biol Chem. 2008 Apr 11;283(15):9615-22. doi: 10.1074/jbc.M705630200. Epub 2008 Jan 17. [18203719 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]