Basic Info

Common NameFumitremorgin B(F04988)
2D Structure
Description

Fumitremorgin B is a mycotoxin produced by Aspergillus fumigatus, Aspergillus caespitosus, Penicillium lanosum and Penicillium piscarium. Fumitremorgin B is isolated from A. fumigatus infected rice and miso

Fumitremorgin b belongs to the family of Indoles. These are compounds containing an indole moiety, which consists of pyrrole ring fused to benzene to form 2,3-benzopyrrole.

FRCD IDF04988
CAS Number12626-17-4
PubChem CID628311
FormulaC27H33N3O5
IUPAC Name

None

InChI Key

WEIYXEFMCIRZHC-UHFFFAOYSA-N

InChI

InChI=1S/C27H33N3O5/c1-15(2)10-12-28-20-14-17(35-5)8-9-18(20)22-23(28)21(13-16(3)4)30-25(32)19-7-6-11-29(19)26(33)27(30,34)24(22)31/h8-10,13-14,19,21,24,31,34H,6-7,11-12H2,1-5H3

Canonical SMILES

CC(=CCN1C2=C(C=CC(=C2)OC)C3=C1C(N4C(=O)C5CCCN5C(=O)C4(C3O)O)C=C(C)C)C

Isomeric SMILES

CC(=CCN1C2=C(C=CC(=C2)OC)C3=C1C(N4C(=O)C5CCCN5C(=O)C4(C3O)O)C=C(C)C)C

Synonyms
        
            AC1LCFOL
        
            WEIYXEFMCIRZHC-UHFFFAOYSA-N
        
            5a,6-Dihydroxy-9-methoxy-11-(3-methyl-2-butenyl)-12-(2-methyl-1-propenyl)-1,2,3,5a,6,11,12,14a-octahydro-5H,14H-pyrrolo[1'',2'':4',5']pyrazino[2',1':6,1]pyrido[3,4-b]indole-5,14-dione #
        
            5H,14H-Pyrrolo[1'',2'':4',5']pyrazino[1',2':1,6]pyrido[3,4-b]indole-5,14-dione, 1,2,3,5a,6,11,12,14a-octahydro-5a,6-dihydroxy-9-methoxy-11-(3-methyl-2-butenyl)-12-(2-methyl-1-propenyl)-, [5ar-(5a.alpha.,6.alpha.,12.beta.,14a.alpha.)]-
        
Classifies
                

                  
                    Fungal Toxin
                  

                
        
Update DateNov 13, 2018 17:07

Chemical Taxonomy

KingdomOrganic compounds
SuperclassOrganoheterocyclic compounds
ClassIndoles and derivatives
SubclassPyridoindoles
Intermediate Tree NodesNot available
Direct ParentBeta carbolines
Alternative Parents
Molecular FrameworkAromatic heteropolycyclic compounds
SubstituentsBeta-carboline - Alpha-amino acid or derivatives - N-alkylindole - 3-alkylindole - Indole - Anisole - Dioxopiperazine - 2,5-dioxopiperazine - Alkyl aryl ether - N-alkylpiperazine - 1,4-diazinane - Piperazine - Substituted pyrrole - Benzenoid - Pyrrolidine - Pyrrole - Tertiary carboxylic acid amide - Heteroaromatic compound - Secondary alcohol - Lactam - Carboxamide group - Alkanolamine - Azacycle - Ether - Carboxylic acid derivative - Organic oxygen compound - Alcohol - Hydrocarbon derivative - Carbonyl group - Organic oxide - Organopnictogen compound - Organic nitrogen compound - Organonitrogen compound - Organooxygen compound - Aromatic heteropolycyclic compound
DescriptionThis compound belongs to the class of organic compounds known as beta carbolines. These are compounds containing a 9H-pyrido[3,4-b]indole moiety.

Properties

Property NameProperty Value
Molecular Weight479.577
Hydrogen Bond Donor Count2
Hydrogen Bond Acceptor Count5
Rotatable Bond Count4
Complexity941
Monoisotopic Mass479.242
Exact Mass479.242
XLogP2.7
Formal Charge0
Heavy Atom Count35
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count4
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

ADMET

Model Result Probability
Absorption
Blood-Brain BarrierBBB-0.9552
Human Intestinal AbsorptionHIA-0.5710
Caco-2 PermeabilityCaco2-0.6261
P-glycoprotein SubstrateSubstrate0.9253
P-glycoprotein InhibitorNon-inhibitor0.5533
Inhibitor0.7091
Renal Organic Cation TransporterNon-inhibitor0.7116
Distribution
Subcellular localizationMitochondria0.6652
Metabolism
CYP450 2C9 SubstrateNon-substrate0.7992
CYP450 2D6 SubstrateNon-substrate0.7404
CYP450 3A4 SubstrateSubstrate0.7711
CYP450 1A2 InhibitorNon-inhibitor0.8516
CYP450 2C9 InhibitorNon-inhibitor0.8280
CYP450 2D6 InhibitorNon-inhibitor0.8961
CYP450 2C19 InhibitorNon-inhibitor0.8141
CYP450 3A4 InhibitorNon-inhibitor0.7935
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.6361
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9685
Inhibitor0.6639
AMES ToxicityNon AMES toxic0.7228
CarcinogensNon-carcinogens0.9339
Fish ToxicityHigh FHMT0.9851
Tetrahymena Pyriformis ToxicityHigh TPT0.9573
Honey Bee ToxicityLow HBT0.6122
BiodegradationNot ready biodegradable0.9951
Acute Oral ToxicityIII0.6702
Carcinogenicity (Three-class)Non-required0.5764

Model Value Unit
Absorption
Aqueous solubility-2.5881LogS
Caco-2 Permeability0.5749LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.9767LD50, mol/kg
Fish Toxicity0.8339pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.5875pIGC50, ug/L

References

TitleJournalDatePubmed ID
Metabolites from Aspergillus fumigatus, an endophytic fungus associated with Melia azedarach, and their antifungal, antifeedant, and toxic activities.J Agric Food Chem2012 Apr 422409377
Genotoxicity assessment of five tremorgenic mycotoxins (fumitremorgen B, paxilline, penitrem A, verruculogen, and verrucosidin) produced by molds isolated from fermented meats.J Food Prot2003 Nov14627292
Isolation and toxigenicity of Aspergillus fumigatus from moldy silage.Mycopathologia200312733634
Production and characterization of monoclonal antibodies against fumitremorgin B.Biomed Environ Sci1998 Dec10095931
[Preparation of fumitremorgin B].Zhonghua Yu Fang Yi Xue Za Zhi1996 Sep9388887

Targets

General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Transmembrane signaling receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRQ
Uniprot ID:
Q9UN88
Molecular Weight:
72020.875 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
G-protein coupled gaba receptor activity
Specific Function:
Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception.
Gene Name:
GABBR2
Uniprot ID:
O75899
Molecular Weight:
105820.52 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Aminobutyraldehyde dehydrogenase activity
Specific Function:
Converts gamma-trimethylaminobutyraldehyde into gamma-butyrobetaine. Catalyzes the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction.
Gene Name:
ALDH9A1
Uniprot ID:
P49189
Molecular Weight:
53801.495 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]
General Function:
G-protein coupled gaba receptor activity
Specific Function:
Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-dependent calcium-channels and modulates inositol phospholipid hydrolysis. Calcium is required for high affinity binding to GABA. Plays a critical role in the fine-tuning of inhibitory synaptic transmission. Pre-synaptic GABA receptor inhibits neurotransmitter release by down-regulating high-voltage activated calcium channels, whereas postsynaptic GABA receptor decreases neuronal excitability by activating a prominent inwardly rectifying potassium (Kir) conductance that underlies the late inhibitory postsynaptic potentials. Not only implicated in synaptic inhibition but also in hippocampal long-term potentiation, slow wave sleep, muscle relaxation and antinociception. Activated by (-)-baclofen, cgp27492 and blocked by phaclofen.Isoform 1E may regulate the formation of functional GABBR1/GABBR2 heterodimers by competing for GABBR2 binding. This could explain the observation that certain small molecule ligands exhibit differential affinity for central versus peripheral sites.
Gene Name:
GABBR1
Uniprot ID:
Q9UBS5
Molecular Weight:
108319.4 Da
Mechanism of Action:
Tremorgenic mycotoxins are thought to inhibit gamma-aminobutyric acid (GABA) receptors, both pre- and postsynaptic, as well as inhibit transmitter breakdown at the GABA-T receptors. This would initially increase neurotransmitter levels, potentiating the GABA-induced chloride current, then lead to decreased levels of neurotransmitter in the synapse.
References
  1. Selala MI, Daelemans F, Schepens PJ: Fungal tremorgens: the mechanism of action of single nitrogen containing toxins--a hypothesis. Drug Chem Toxicol. 1989 Sep-Dec;12(3-4):237-57. [2698801 ]