Mitogen-activated protein kinase 3


NameMitogen-activated protein kinase 3
Synonyms2.7.11.24 ERK-1 ERK1 ERT2 Extracellular signal-regulated kinase 1 Insulin-stimulated MAP2 kinase MAP kinase 3 MAP kinase isoform p44 Microtubule-associated protein 2 kinase p44-ERK1 p44-MAPK PRKM3
Gene NameMAPK3
OrganismHuman
Amino acid sequence
>lcl|BSEQ0002115|Mitogen-activated protein kinase 3
MAAAAAQGGGGGEPRRTEGVGPGVPGEVEMVKGQPFDVGPRYTQLQYIGEGAYGMVSSAY
DHVRKTRVAIKKISPFEHQTYCQRTLREIQILLRFRHENVIGIRDILRASTLEAMRDVYI
VQDLMETDLYKLLKSQQLSNDHICYFLYQILRGLKYIHSANVLHRDLKPSNLLINTTCDL
KICDFGLARIADPEHDHTGFLTEYVATRWYRAPEIMLNSKGYTKSIDIWSVGCILAEMLS
NRPIFPGKHYLDQLNHILGILGSPSQEDLNCIINMKARNYLQSLPSKTKVAWAKLFPKSD
SKALDLLDRMLTFNPNKRITVEEALAHPYLEQYYDPTDEPVAEEPFTFAMELDDLPKERL
KELIFQETARFQPGVLEAP
Number of residues379
Molecular Weight43135.16
Theoretical pI6.74
GO Classification
Functions
    MAP kinase activity
    phosphatase binding
    ATP binding
Processes
    toll-like receptor 2 signaling pathway
    activation of MAPKK activity
    positive regulation of histone phosphorylation
    regulation of stress-activated MAPK cascade
    positive regulation of telomere maintenance via telomerase
    axon guidance
    JAK-STAT cascade involved in growth hormone signaling pathway
    toll-like receptor 3 signaling pathway
    apoptotic process
    interleukin-1-mediated signaling pathway
    small GTPase mediated signal transduction
    response to toxic substance
    ERK1 and ERK2 cascade
    regulation of cellular response to heat
    DNA damage induced protein phosphorylation
    toll-like receptor 4 signaling pathway
    fibroblast growth factor receptor signaling pathway
    transcription from RNA polymerase I promoter
    cell cycle
    cytokine-mediated signaling pathway
    regulation of cytoskeleton organization
    epidermal growth factor receptor signaling pathway
    toll-like receptor 5 signaling pathway
    insulin receptor signaling pathway
    caveolin-mediated endocytosis
    transcription initiation from RNA polymerase I promoter
    phosphorylation
    regulation of early endosome to late endosome transport
    Fc-gamma receptor signaling pathway involved in phagocytosis
    viral process
    toll-like receptor 9 signaling pathway
    MAPK cascade
    cellular response to heat
    positive regulation of cyclase activity
    platelet activation
    lipopolysaccharide-mediated signaling pathway
    regulation of Golgi inheritance
    innate immune response
    cartilage development
    neurotrophin TRK receptor signaling pathway
    toll-like receptor signaling pathway
    lung morphogenesis
    negative regulation of apolipoprotein binding
    protein complex assembly
    regulation of sequence-specific DNA binding transcription factor activity
    peptidyl-tyrosine autophosphorylation
    positive regulation of transcription from RNA polymerase II promoter
    toll-like receptor TLR1
    MAPK import into nucleus
    positive regulation of ERK1 and ERK2 cascade
    response to epidermal growth factor
    positive regulation of protein phosphorylation
    protein phosphorylation
    toll-like receptor TLR6
    MyD88-dependent toll-like receptor signaling pathway
    gene expression
    activation of MAPK activity
    response to exogenous dsRNA
    Fc-epsilon receptor signaling pathway
    Ras protein signal transduction
    trachea formation
    MyD88-independent toll-like receptor signaling pathway
    arachidonic acid metabolic process
    stress-activated MAPK cascade
    cellular response to mechanical stimulus
    blood coagulation
    vascular endothelial growth factor receptor signaling pathway
    TRIF-dependent toll-like receptor signaling pathway
    positive regulation of telomerase activity
    BMP signaling pathway
    toll-like receptor 10 signaling pathway
    positive regulation of histone acetylation
    sensory perception of pain
    positive regulation of translation
    positive regulation of telomere capping
    peptidyl-serine phosphorylation
Components
    caveola
    late endosome
    early endosome
    nuclear envelope
    mitochondrion
    protein complex
    focal adhesion
    Golgi apparatus
    cytoskeleton
    microtubule cytoskeleton
    cytosol
    extracellular exosome
    pseudopodium
    nucleus
    nucleoplasm
General FunctionPhosphatase binding
Specific FunctionSerine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays also a role in initiation and regulation of meiosis, mitosis, and postmitotic functions in differentiated cells by phosphorylating a number of transcription factors. About 160 substrates have already been discovered for ERKs. Many of these substrates are localized in the nucleus, and seem to participate in the regulation of transcription upon stimulation. However, other substrates are found in the cytosol as well as in other cellular organelles, and those are responsible for processes such as translation, mitosis and apoptosis. Moreover, the MAPK/ERK cascade is also involved in the regulation of the endosomal dynamics, including lysosome processing and endosome cycling through the perinuclear recycling compartment (PNRC); as well as in the fragmentation of the Golgi apparatus during mitosis. The substrates include transcription factors (such as ATF2, BCL6, ELK1, ERF, FOS, HSF4 or SPZ1), cytoskeletal elements (such as CANX, CTTN, GJA1, MAP2, MAPT, PXN, SORBS3 or STMN1), regulators of apoptosis (such as BAD, BTG2, CASP9, DAPK1, IER3, MCL1 or PPARG), regulators of translation (such as EIF4EBP1) and a variety of other signaling-related molecules (like ARHGEF2, FRS2 or GRB10). Protein kinases (such as RAF1, RPS6KA1/RSK1, RPS6KA3/RSK2, RPS6KA2/RSK3, RPS6KA6/RSK4, SYK, MKNK1/MNK1, MKNK2/MNK2, RPS6KA5/MSK1, RPS6KA4/MSK2, MAPKAPK3 or MAPKAPK5) and phosphatases (such as DUSP1, DUSP4, DUSP6 or DUSP16) are other substrates which enable the propagation the MAPK/ERK signal to additional cytosolic and nuclear targets, thereby extending the specificity of the cascade.
Transmembrane Regions
GenBank Protein ID31221
UniProtKB IDP27361
UniProtKB Entry NameMK03_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0021655|Mitogen-activated protein kinase 3 (MAPK3)
ATGGCGGCGGCGGCGGCTCAGGGGGGCGGGGGCGGGGAGCCCCGTAGAACCGAGGGGGTC
GGCCCGGGGGTCCCGGGGGAGGTGGAGATGGTGAAGGGGCAGCCGTTCGACGTGGGCCCG
CGCTACACGCAGTTGCAGTACATCGGCGAGGGCGCGTACGGCATGGTCAGCTCGGCCTAT
GACCACGTGCGCAAGACTCGCGTGGCCATCAAGAAGATCAGCCCCTTCGAACATCAGACC
TACTGCCAGCGCACGCTCCGGGAGATCCAGATCCTGCTGCGCTTCCGCCATGAGAATGTC
ATCGGCATCCGAGACATTCTGCGGGCGTCCACCCTGGAAGCCATGAGAGATGTCTACATT
GTGCAGGACCTGATGGAGACTGACCTGTACAAGTTGCTGAAAAGCCAGCAGCTGAGCAAT
GACCATATCTGCTACTTCCTCTACCAGATCCTGCGGGGCCTCAAGTACATCCACTCCGCC
AACGTGCTCCACCGAGATCTAAAGCCCTCCAACCTGCTCATCAACACCACCTGCGACCTT
AAGATTTGTGATTTCGGCCTGGCCCGGATTGCCGATCCTGAGCATGACCACACCGGCTTC
CTGACGGAGTATGTGGCTACGCGCTGGTACCGGGCCCCAGAGATCATGCTGAACTCCAAG
GGCTATACCAAGTCCATCGACATCTGGTCTGTGGGCTGCATTCTGGCTGAGATGCTCTCT
AACCGGCCCATCTTCCCTGGCAAGCACTACCTGGATCAGCTCAACCACATTCTGGGCATC
CTGGGCTCCCCATCCCAGGAGGACCTGAATTGTATCATCAACATGAAGGCCCGAAACTAC
CTACAGTCTCTGCCCTCCAAGACCAAGGTGGCTTGGGCCAAGCTTTTCCCCAAGTCAGAC
TCCAAAGCCCTTGACCTGCTGGACCGGATGTTAACCTTTAACCCCAATAAACGGATCACA
GTGGAGGAAGCGCTGGCTCACCCCTACCTGGAGCAGTACTATGACCCGACGGATGAGGTG
GGCCAGTCCCCAGCAGCAGTGGGGCTGGGGGCAGGGGAGCAGGGGGGCACGTAG
GenBank Gene IDX60188
GeneCard IDNone
GenAtlas IDMAPK3
HGNC IDHGNC:6877
Chromosome Location16
Locus16p11.2
References
  1. Martin J, Han C, Gordon LA, Terry A, Prabhakar S, She X, Xie G, Hellsten U, Chan YM, Altherr M, Couronne O, Aerts A, Bajorek E, Black S, Blumer H, Branscomb E, Brown NC, Bruno WJ, Buckingham JM, Callen DF, Campbell CS, Campbell ML, Campbell EW, Caoile C, Challacombe JF, Chasteen LA, Chertkov O, Chi HC, Christensen M, Clark LM, Cohn JD, Denys M, Detter JC, Dickson M, Dimitrijevic-Bussod M, Escobar J, Fawcett JJ, Flowers D, Fotopulos D, Glavina T, Gomez M, Gonzales E, Goodstein D, Goodwin LA, Grady DL, Grigoriev I, Groza M, Hammon N, Hawkins T, Haydu L, Hildebrand CE, Huang W, Israni S, Jett J, Jewett PB, Kadner K, Kimball H, Kobayashi A, Krawczyk MC, Leyba T, Longmire JL, Lopez F, Lou Y, Lowry S, Ludeman T, Manohar CF, Mark GA, McMurray KL, Meincke LJ, Morgan J, Moyzis RK, Mundt MO, Munk AC, Nandkeshwar RD, Pitluck S, Pollard M, Predki P, Parson-Quintana B, Ramirez L, Rash S, Retterer J, Ricke DO, Robinson DL, Rodriguez A, Salamov A, Saunders EH, Scott D, Shough T, Stallings RL, Stalvey M, Sutherland RD, Tapia R, Tesmer JG, Thayer N, Thompson LS, Tice H, Torney DC, Tran-Gyamfi M, Tsai M, Ulanovsky LE, Ustaszewska A, Vo N, White PS, Williams AL, Wills PL, Wu JR, Wu K, Yang J, Dejong P, Bruce D, Doggett NA, Deaven L, Schmutz J, Grimwood J, Richardson P, Rokhsar DS, Eichler EE, Gilna P, Lucas SM, Myers RM, Rubin EM, Pennacchio LA: The sequence and analysis of duplication-rich human chromosome 16. Nature. 2004 Dec 23;432(7020):988-94.[15616553 ]
  2. Ni H, Wang XS, Diener K, Yao Z: MAPKAPK5, a novel mitogen-activated protein kinase (MAPK)-activated protein kinase, is a substrate of the extracellular-regulated kinase (ERK) and p38 kinase. Biochem Biophys Res Commun. 1998 Feb 13;243(2):492-6.[9480836 ]
  3. Langlais P, Wang C, Dong LQ, Carroll CA, Weintraub ST, Liu F: Phosphorylation of Grb10 by mitogen-activated protein kinase: identification of Ser150 and Ser476 of human Grb10zeta as major phosphorylation sites. Biochemistry. 2005 Jun 21;44(24):8890-7.[15952796 ]
  4. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007.[19690332 ]
  5. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570.[21406692 ]
  6. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8.[17344846 ]
  7. Yao Z, Seger R: The ERK signaling cascade--views from different subcellular compartments. Biofactors. 2009 Sep-Oct;35(5):407-16. doi: 10.1002/biof.52.[19565474 ]
  8. Charest DL, Mordret G, Harder KW, Jirik F, Pelech SL: Molecular cloning, expression, and characterization of the human mitogen-activated protein kinase p44erk1. Mol Cell Biol. 1993 Aug;13(8):4679-90.[7687743 ]
  9. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309.[19413330 ]
  10. Sun J, Pedersen M, Ronnstrand L: The D816V mutation of c-Kit circumvents a requirement for Src family kinases in c-Kit signal transduction. J Biol Chem. 2009 Apr 24;284(17):11039-47. doi: 10.1074/jbc.M808058200. Epub 2009 Mar 5.[19265199 ]
  11. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7.[15489334 ]
  12. Owaki H, Makar R, Boulton TG, Cobb MH, Geppert TD: Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs. Biochem Biophys Res Commun. 1992 Feb 14;182(3):1416-22.[1540184 ]
  13. Gonzalez FA, Raden DL, Rigby MR, Davis RJ: Heterogeneous expression of four MAP kinase isoforms in human tissues. FEBS Lett. 1992 Jun 15;304(2-3):170-8.[1319925 ]
  14. Marklund U, Brattsand G, Shingler V, Gullberg M: Serine 25 of oncoprotein 18 is a major cytosolic target for the mitogen-activated protein kinase. J Biol Chem. 1993 Jul 15;268(20):15039-47.[8325880 ]
  15. Greenway A, Azad A, Mills J, McPhee D: Human immunodeficiency virus type 1 Nef binds directly to Lck and mitogen-activated protein kinase, inhibiting kinase activity. J Virol. 1996 Oct;70(10):6701-8.[8794306 ]
  16. Fukunaga R, Hunter T: MNK1, a new MAP kinase-activated protein kinase, isolated by a novel expression screening method for identifying protein kinase substrates. EMBO J. 1997 Apr 15;16(8):1921-33.[9155018 ]
  17. Chevet E, Wong HN, Gerber D, Cochet C, Fazel A, Cameron PH, Gushue JN, Thomas DY, Bergeron JJ: Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes. EMBO J. 1999 Jul 1;18(13):3655-66.[10393181 ]
  18. Todd JL, Tanner KG, Denu JM: Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway. J Biol Chem. 1999 May 7;274(19):13271-80.[10224087 ]
  19. Rubinfeld H, Hanoch T, Seger R: Identification of a cytoplasmic-retention sequence in ERK2. J Biol Chem. 1999 Oct 22;274(43):30349-52.[10521408 ]
  20. Brondello JM, Pouyssegur J, McKenzie FR: Reduced MAP kinase phosphatase-1 degradation after p42/p44MAPK-dependent phosphorylation. Science. 1999 Dec 24;286(5449):2514-7.[10617468 ]
  21. Garcia J, Ye Y, Arranz V, Letourneux C, Pezeron G, Porteu F: IEX-1: a new ERK substrate involved in both ERK survival activity and ERK activation. EMBO J. 2002 Oct 1;21(19):5151-63.[12356731 ]
  22. Sano H, Liu SC, Lane WS, Piletz JE, Lienhard GE: Insulin receptor substrate 4 associates with the protein IRAS. J Biol Chem. 2002 May 31;277(22):19439-47. Epub 2002 Mar 23.[11912194 ]
  23. Ronnstrand L: Signal transduction via the stem cell factor receptor/c-Kit. Cell Mol Life Sci. 2004 Oct;61(19-20):2535-48.[15526160 ]
  24. Chen CH, Wang WJ, Kuo JC, Tsai HC, Lin JR, Chang ZF, Chen RH: Bidirectional signals transduced by DAPK-ERK interaction promote the apoptotic effect of DAPK. EMBO J. 2005 Jan 26;24(2):294-304. Epub 2004 Dec 16.[15616583 ]
  25. Ouwens DM, de Ruiter ND, van der Zon GC, Carter AP, Schouten J, van der Burgt C, Kooistra K, Bos JL, Maassen JA, van Dam H: Growth factors can activate ATF2 via a two-step mechanism: phosphorylation of Thr71 through the Ras-MEK-ERK pathway and of Thr69 through RalGDS-Src-p38. EMBO J. 2002 Jul 15;21(14):3782-93.[12110590 ]
  26. Wu Y, Chen Z, Ullrich A: EGFR and FGFR signaling through FRS2 is subject to negative feedback control by ERK1/2. Biol Chem. 2003 Aug;384(8):1215-26.[12974390 ]
  27. Hong JW, Ryu MS, Lim IK: Phosphorylation of serine 147 of tis21/BTG2/pc3 by p-Erk1/2 induces Pin-1 binding in cytoplasm and cell death. J Biol Chem. 2005 Jun 3;280(22):21256-63. Epub 2005 Mar 23.[15788397 ]
  28. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48.[17081983 ]
  29. Hu Y, Mivechi NF: Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol Cell Biol. 2006 Apr;26(8):3282-94.[16581800 ]
  30. Degoutin J, Vigny M, Gouzi JY: ALK activation induces Shc and FRS2 recruitment: Signaling and phenotypic outcomes in PC12 cells differentiation. FEBS Lett. 2007 Feb 20;581(4):727-34. Epub 2007 Jan 25.[17274988 ]
  31. Xu TR, Baillie GS, Bhari N, Houslay TM, Pitt AM, Adams DR, Kolch W, Houslay MD, Milligan G: Mutations of beta-arrestin 2 that limit self-association also interfere with interactions with the beta2-adrenoceptor and the ERK1/2 MAPKs: implications for beta2-adrenoceptor signalling via the ERK1/2 MAPKs. Biochem J. 2008 Jul 1;413(1):51-60. doi: 10.1042/BJ20080685.[18435604 ]
  32. Zhong JL, Poghosyan Z, Pennington CJ, Scott X, Handsley MM, Warn A, Gavrilovic J, Honert K, Kruger A, Span PN, Sweep FC, Edwards DR: Distinct functions of natural ADAM-15 cytoplasmic domain variants in human mammary carcinoma. Mol Cancer Res. 2008 Mar;6(3):383-94. doi: 10.1158/1541-7786.MCR-07-2028. Epub 2008 Feb 22.[18296648 ]
  33. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.[18691976 ]
  34. Vomastek T, Iwanicki MP, Burack WR, Tiwari D, Kumar D, Parsons JT, Weber MJ, Nandicoori VK: Extracellular signal-regulated kinase 2 (ERK2) phosphorylation sites and docking domain on the nuclear pore complex protein Tpr cooperatively regulate ERK2-Tpr interaction. Mol Cell Biol. 2008 Nov;28(22):6954-66. doi: 10.1128/MCB.00925-08. Epub 2008 Sep 15.[18794356 ]
  35. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31.[18669648 ]
  36. Sacco F, Tinti M, Palma A, Ferrari E, Nardozza AP, Hooft van Huijsduijnen R, Takahashi T, Castagnoli L, Cesareni G: Tumor suppressor density-enhanced phosphatase-1 (DEP-1) inhibits the RAS pathway by direct dephosphorylation of ERK1/2 kinases. J Biol Chem. 2009 Aug 14;284(33):22048-58. doi: 10.1074/jbc.M109.002758. Epub 2009 Jun 3.[19494114 ]
  37. Won M, Park KA, Byun HS, Kim YR, Choi BL, Hong JH, Park J, Seok JH, Lee YH, Cho CH, Song IS, Kim YK, Shen HM, Hur GM: Protein kinase SGK1 enhances MEK/ERK complex formation through the phosphorylation of ERK2: implication for the positive regulatory role of SGK1 on the ERK function during liver regeneration. J Hepatol. 2009 Jul;51(1):67-76. doi: 10.1016/j.jhep.2009.02.027. Epub 2009 Apr 16.[19447520 ]
  38. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.[19369195 ]
  39. Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ: A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med. 2009 Jan;15(1):75-83. doi: 10.1038/nm.1893. Epub 2008 Dec 7.[19060905 ]
  40. Yoon S, Seger R: The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors. 2006 Mar;24(1):21-44.[16393692 ]
  41. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475.[20068231 ]
  42. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17.[21269460 ]
  43. Wortzel I, Seger R: The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer. 2011 Mar;2(3):195-209. doi: 10.1177/1947601911407328.[21779493 ]
  44. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5.[22223895 ]
  45. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18.[22814378 ]
  46. Cheung CT, Singh R, Kalra RS, Kaul SC, Wadhwa R: Collaborator of ARF (CARF) regulates proliferative fate of human cells by dose-dependent regulation of DNA damage signaling. J Biol Chem. 2014 Jun 27;289(26):18258-69. doi: 10.1074/jbc.M114.547208. Epub 2014 May 13.[24825908 ]
  47. Kinoshita T, Yoshida I, Nakae S, Okita K, Gouda M, Matsubara M, Yokota K, Ishiguro H, Tada T: Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochem Biophys Res Commun. 2008 Dec 26;377(4):1123-7. doi: 10.1016/j.bbrc.2008.10.127. Epub 2008 Nov 5.[18983981 ]

Related FRC


FRCD ID Name Exact Mass Structure



2,2',4,4',5,5'-Hexachlorobiphenyl




360.864



2,3,3',4,4',5-Hexachlorobiphenyl




360.864



Maneb




265.284



Cadmium




112.414



Chromium




51.996



Chromocene




182.186