Glycogen synthase kinase-3 beta


NameGlycogen synthase kinase-3 beta
Synonyms2.7.11.26 GSK-3 beta Serine/threonine-protein kinase GSK3B
Gene NameGSK3B
OrganismHuman
Amino acid sequence
>lcl|BSEQ0002121|Glycogen synthase kinase-3 beta
MSGRPRTTSFAESCKPVQQPSAFGSMKVSRDKDGSKVTTVVATPGQGPDRPQEVSYTDTK
VIGNGSFGVVYQAKLCDSGELVAIKKVLQDKRFKNRELQIMRKLDHCNIVRLRYFFYSSG
EKKDEVYLNLVLDYVPETVYRVARHYSRAKQTLPVIYVKLYMYQLFRSLAYIHSFGICHR
DIKPQNLLLDPDTAVLKLCDFGSAKQLVRGEPNVSYICSRYYRAPELIFGATDYTSSIDV
WSAGCVLAELLLGQPIFPGDSGVDQLVEIIKVLGTPTREQIREMNPNYTEFKFPQIKAHP
WTKVFRPRTPPEAIALCSRLLEYTPTARLTPLEACAHSFFDELRDPNVKLPNGRDTPALF
NFTTQELSSNPPLATILIPPHARIQAAASTPTNATAASDANTGDRGQTNNAASASASNST
Number of residues420
Molecular Weight46743.865
Theoretical pI8.97
GO Classification
Functions
    protein kinase binding
    beta-catenin binding
    ubiquitin protein ligase binding
    protein kinase A catalytic subunit binding
    RNA polymerase II transcription factor binding
    tau-protein kinase activity
    p53 binding
    ATP binding
    kinase activity
    NF-kappaB binding
    protein serine/threonine kinase activity
Processes
    positive regulation of protein catabolic process
    fibroblast growth factor receptor signaling pathway
    positive regulation of peptidyl-threonine phosphorylation
    negative regulation of cardiac muscle hypertrophy
    positive regulation of axon extension
    positive regulation of proteasomal ubiquitin-dependent protein catabolic process
    negative regulation of apoptotic process
    regulation of cellular response to heat
    protein localization to microtubule
    positive regulation of mitochondrial outer membrane permeabilization involved in apoptotic signaling pathway
    negative regulation of canonical Wnt signaling pathway
    negative regulation of protein complex assembly
    positive regulation of protein complex assembly
    negative regulation of neuron projection development
    glycogen metabolic process
    regulation of microtubule-based process
    neurotrophin TRK receptor signaling pathway
    canonical Wnt signaling pathway
    negative regulation of neuron maturation
    hippocampus development
    positive regulation of protein export from nucleus
    positive regulation of peptidyl-serine phosphorylation
    negative regulation of protein binding
    re-entry into mitotic cell cycle
    phosphatidylinositol-mediated signaling
    axon guidance
    positive regulation of transcription from RNA polymerase II promoter
    ER overload response
    protein autophosphorylation
    fat cell differentiation
    positive regulation of protein binding
    hypermethylation of CpG island
    cell migration
    protein phosphorylation
    extrinsic apoptotic signaling pathway in absence of ligand
    positive regulation of stem cell differentiation
    protein export from nucleus
    epithelial to mesenchymal transition
    negative regulation of glycogen (starch) synthase activity
    epidermal growth factor receptor signaling pathway
    intracellular signal transduction
    canonical Wnt signaling pathway involved in positive regulation of apoptotic process
    intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress
    cellular response to interleukin-3
    myoblast fusion
    negative regulation of glycogen biosynthetic process
    innate immune response
    circadian rhythm
    negative regulation of protein localization to nucleus
    organ morphogenesis
    positive regulation of cell-matrix adhesion
    negative regulation of type B pancreatic cell development
    Fc-epsilon receptor signaling pathway
    positive regulation of GTPase activity
    superior temporal gyrus development
    negative regulation of NFAT protein import into nucleus
    peptidyl-serine phosphorylation
    positive regulation of canonical Wnt signaling pathway
    cellular response to heat
    regulation of gene expression by genetic imprinting
Components
    nucleus
    plasma membrane
    growth cone
    cytosol
    beta-catenin destruction complex
    neuronal postsynaptic density
    perinuclear region of cytoplasm
    centrosome
    dendritic shaft
    cytoplasm
    neuronal cell body
    ribonucleoprotein complex
General FunctionUbiquitin protein ligase binding
Specific FunctionConstitutively active protein kinase that acts as a negative regulator in the hormonal control of glucose homeostasis, Wnt signaling and regulation of transcription factors and microtubules, by phosphorylating and inactivating glycogen synthase (GYS1 or GYS2), EIF2B, CTNNB1/beta-catenin, APC, AXIN1, DPYSL2/CRMP2, JUN, NFATC1/NFATC, MAPT/TAU and MACF1. Requires primed phosphorylation of the majority of its substrates. In skeletal muscle, contributes to insulin regulation of glycogen synthesis by phosphorylating and inhibiting GYS1 activity and hence glycogen synthesis. May also mediate the development of insulin resistance by regulating activation of transcription factors. Regulates protein synthesis by controlling the activity of initiation factor 2B (EIF2BE/EIF2B5) in the same manner as glycogen synthase. In Wnt signaling, GSK3B forms a multimeric complex with APC, AXIN1 and CTNNB1/beta-catenin and phosphorylates the N-terminus of CTNNB1 leading to its degradation mediated by ubiquitin/proteasomes. Phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. Phosphorylates NFATC1/NFATC on conserved serine residues promoting NFATC1/NFATC nuclear export, shutting off NFATC1/NFATC gene regulation, and thereby opposing the action of calcineurin. Phosphorylates MAPT/TAU on 'Thr-548', decreasing significantly MAPT/TAU ability to bind and stabilize microtubules. MAPT/TAU is the principal component of neurofibrillary tangles in Alzheimer disease. Plays an important role in ERBB2-dependent stabilization of microtubules at the cell cortex. Phosphorylates MACF1, inhibiting its binding to microtubules which is critical for its role in bulge stem cell migration and skin wound repair. Probably regulates NF-kappa-B (NFKB1) at the transcriptional level and is required for the NF-kappa-B-mediated anti-apoptotic response to TNF-alpha (TNF/TNFA). Negatively regulates replication in pancreatic beta-cells, resulting in apoptosis, loss of beta-cells and diabetes. Through phosphorylation of the anti-apoptotic protein MCL1, may control cell apoptosis in response to growth factors deprivation. Phosphorylates MUC1 in breast cancer cells, decreasing the interaction of MUC1 with CTNNB1/beta-catenin. Is necessary for the establishment of neuronal polarity and axon outgrowth. Phosphorylates MARK2, leading to inhibit its activity. Phosphorylates SIK1 at 'Thr-182', leading to sustain its activity. Phosphorylates ZC3HAV1 which enhances its antiviral activity. Phosphorylates SNAI1, leading to its BTRC-triggered ubiquitination and proteasomal degradation. Phosphorylates SFPQ at 'Thr-687' upon T-cell activation. Phosphorylates NR1D1 st 'Ser-55' and 'Ser-59' and stabilizes it by protecting it from proteasomal degradation. Regulates the circadian clock via phosphorylation of the major clock components including ARNTL/BMAL1, CLOCK and PER2. Phosphorylates CLOCK AT 'Ser-427' and targets it for proteasomal degradation. Phosphorylates ARNTL/BMAL1 at 'Ser-17' and 'Ser-21' and primes it for ubiquitination and proteasomal degradation. Phosphorylates OGT at 'Ser-3' or 'Ser-4' which positively regulates its activity. Phosphorylates MYCN in neuroblastoma cells which may promote its degradation (PubMed:24391509).
Transmembrane Regions
GenBank Protein ID529237
UniProtKB IDP49841
UniProtKB Entry NameGSK3B_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0021658|Glycogen synthase kinase-3 beta (GSK3B)
ATGTCAGGGCGGCCCAGAACCACCTCCTTTGCGGAGAGCTGCAAGCCGGTGCAGCAGCCT
TCAGCTTTTGGCAGCATGAAAGTTAGCAGAGACAAGGACGGCAGCAAGGTGACAACAGTG
GTGGCAACTCCTGGGCAGGGTCCAGACAGGCCACAAGAAGTCAGCTATACAGACACTAAA
GTGATTGGAAATGGATCATTTGGTGTGGTATATCAAGCCAAACTTTGTGATTCAGGAGAA
CTGGTCGCCATCAAGAAAGTATTGCAGGACAAGAGATTTAAGAATCGAGAGCTCCAGATC
ATGAGAAAGCTAGATCACTGTAACATAGTCCGATTGCGTTATTTCTTCTACTCCAGTGGT
GAGAAGAAAGATGAGGTCTATCTTAATCTGGTGCTGGACTATGTTCCGGAAACAGTATAC
AGAGTTGCCAGACACTATAGTCGAGCCAAACAGACGCTCCCTGTGATTTATGTCAAGTTG
TATATGTATCAGCTGTTCCGAAGTTTAGCCTATATCCATTCCTTTGGAATCTGCCATCGG
GATATTAAACCGCAGAACCTCTTGTTGGATCCTGATACTGCTGTATTAAAACTCTGTGAC
TTTGGAAGTGCAAAGCAGCTGGTCCGAGGAGAACCCAATGTTTCGTATATCTGTTCTCGG
TACTATAGGGCACCAGAGTTGATCTTTGGAGCCACTGATTATACCTCTAGTATAGATGTA
TGGTCTGCTGGCTGTGTGTTGGCTGAGCTGTTACTAGGACAACCAATATTTCCAGGGGAT
AGTGGTGTGGATCAGTTGGTAGAAATAATCAAGGTCCTGGGAACTCCAACAAGGGAGCAA
ATCAGAGAAATGAACCCAAACTACACAGAATTTAAATTCCCTCAAATTAAGGCACATCCT
TGGACTAAGGTCTTCCGACCCCGAACTCCACCGGAGGCAATTGCACTGTGTAGCCGTCTG
CTGGAGTATACACCAACTGCCCGACTAACACCACTGGAAGCTTGTGCACATTCATTTTTT
GATGAATTACGGGACCCAAATGTCAAACTACCAAATGGGCGAGACACACCTGCACTCTTC
AACTTCACCACTCAAGAACTGTCAAGTAATCCACCTCTGGCTACCATCCTTATTCCTCCT
CATGCTCGGATTCAAGCAGCTGCTTCAACCCCCACAAATGCCACAGCAGCGTCAGATGCT
AATACTGGAGACCGTGGACAGACCAATAATGCTGCTTCTGCATCAGCTTCCAACTCCACC
TGA
GenBank Gene IDL33801
GeneCard IDNone
GenAtlas IDGSK3B
HGNC IDHGNC:4617
Chromosome Location3
Locus3q13.3
References
  1. Li Y, Bharti A, Chen D, Gong J, Kufe D: Interaction of glycogen synthase kinase 3beta with the DF3/MUC1 carcinoma-associated antigen and beta-catenin. Mol Cell Biol. 1998 Dec;18(12):7216-24.[9819408 ]
  2. Zhou BP, Deng J, Xia W, Xu J, Li YM, Gunduz M, Hung MC: Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nat Cell Biol. 2004 Oct;6(10):931-40. Epub 2004 Sep 26.[15448698 ]
  3. Spengler ML, Kuropatwinski KK, Schumer M, Antoch MP: A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle. 2009 Dec 15;8(24):4138-46. Epub 2009 Dec 8.[19946213 ]
  4. Castano Z, Gordon-Weeks PR, Kypta RM: The neuron-specific isoform of glycogen synthase kinase-3beta is required for axon growth. J Neurochem. 2010 Apr;113(1):117-30. doi: 10.1111/j.1471-4159.2010.06581.x. Epub 2010 Jan 12.[20067585 ]
  5. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S: Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci U S A. 1998 Sep 15;95(19):11211-6.[9736715 ]
  6. Hong YR, Chen CH, Chang JH, Wang S, Sy WD, Chou CK, Howng SL: Cloning and characterization of a novel human ninein protein that interacts with the glycogen synthase kinase 3beta. Biochim Biophys Acta. 2000 Jul 24;1492(2-3):513-6.[11004522 ]
  7. Nikoulina SE, Ciaraldi TP, Mudaliar S, Mohideen P, Carter L, Henry RR: Potential role of glycogen synthase kinase-3 in skeletal muscle insulin resistance of type 2 diabetes. Diabetes. 2000 Feb;49(2):263-71.[10868943 ]
  8. Frame S, Cohen P, Biondi RM: A common phosphate binding site explains the unique substrate specificity of GSK3 and its inactivation by phosphorylation. Mol Cell. 2001 Jun;7(6):1321-7.[11430833 ]
  9. Dai F, Yu L, He H, Chen Y, Yu J, Yang Y, Xu Y, Ling W, Zhao S: Human serum and glucocorticoid-inducible kinase-like kinase (SGKL) phosphorylates glycogen syntheses kinase 3 beta (GSK-3beta) at serine-9 through direct interaction. Biochem Biophys Res Commun. 2002 May 17;293(4):1191-6.[12054501 ]
  10. Heyd F, Lynch KW: Phosphorylation-dependent regulation of PSF by GSK3 controls CD45 alternative splicing. Mol Cell. 2010 Oct 8;40(1):126-37. doi: 10.1016/j.molcel.2010.09.013.[20932480 ]
  11. Cho JH, Johnson GV: Primed phosphorylation of tau at Thr231 by glycogen synthase kinase 3beta (GSK3beta) plays a critical role in regulating tau's ability to bind and stabilize microtubules. J Neurochem. 2004 Jan;88(2):349-58.[14690523 ]
  12. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA: Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21-28;378(6559):785-9.[8524413 ]
  13. Beals CR, Sheridan CM, Turck CW, Gardner P, Crabtree GR: Nuclear export of NF-ATc enhanced by glycogen synthase kinase-3. Science. 1997 Mar 28;275(5308):1930-4.[9072970 ]
  14. Hong YR, Chen CH, Cheng DS, Howng SL, Chow CC: Human dynamin-like protein interacts with the glycogen synthase kinase 3beta. Biochem Biophys Res Commun. 1998 Aug 28;249(3):697-703.[9731200 ]
  15. Stambolic V, Woodgett JR: Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J. 1994 Nov 1;303 ( Pt 3):701-4.[7980435 ]
  16. Oh M, Kim H, Yang I, Park JH, Cong WT, Baek MC, Bareiss S, Ki H, Lu Q, No J, Kwon I, Choi JK, Kim K: GSK-3 phosphorylates delta-catenin and negatively regulates its stability via ubiquitination/proteosome-mediated proteolysis. J Biol Chem. 2009 Oct 16;284(42):28579-89. doi: 10.1074/jbc.M109.002659. Epub 2009 Aug 25.[19706605 ]
  17. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.[19369195 ]
  18. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007.[19690332 ]
  19. Lau KF, Miller CC, Anderton BH, Shaw PC: Molecular cloning and characterization of the human glycogen synthase kinase-3beta promoter. Genomics. 1999 Sep 1;60(2):121-8.[10486203 ]
  20. Rhoads AR, Karkera JD, Detera-Wadleigh SD: Radiation hybrid mapping of genes in the lithium-sensitive wnt signaling pathway. Mol Psychiatry. 1999 Sep;4(5):437-42.[10523816 ]
  21. Boyle WJ, Smeal T, Defize LH, Angel P, Woodgett JR, Karin M, Hunter T: Activation of protein kinase C decreases phosphorylation of c-Jun at sites that negatively regulate its DNA-binding activity. Cell. 1991 Feb 8;64(3):573-84.[1846781 ]
  22. Welsh GI, Proud CG: Glycogen synthase kinase-3 is rapidly inactivated in response to insulin and phosphorylates eukaryotic initiation factor eIF-2B. Biochem J. 1993 Sep 15;294 ( Pt 3):625-9.[8397507 ]
  23. Sutherland C, Leighton IA, Cohen P: Inactivation of glycogen synthase kinase-3 beta by phosphorylation: new kinase connections in insulin and growth-factor signalling. Biochem J. 1993 Nov 15;296 ( Pt 1):15-9.[8250835 ]
  24. Hsu HC, Lee YL, Cheng TS, Howng SL, Chang LK, Lu PJ, Hong YR: Characterization of two non-testis-specific CABYR variants that bind to GSK3beta with a proline-rich extensin-like domain. Biochem Biophys Res Commun. 2005 Apr 15;329(3):1108-17.[15752768 ]
  25. Yook JI, Li XY, Ota I, Fearon ER, Weiss SJ: Wnt-dependent regulation of the E-cadherin repressor snail. J Biol Chem. 2005 Mar 25;280(12):11740-8. Epub 2005 Jan 11.[15647282 ]
  26. Kobayashi T, Hino S, Oue N, Asahara T, Zollo M, Yasui W, Kikuchi A: Glycogen synthase kinase 3 and h-prune regulate cell migration by modulating focal adhesions. Mol Cell Biol. 2006 Feb;26(3):898-911.[16428445 ]
  27. Yin L, Wang J, Klein PS, Lazar MA: Nuclear receptor Rev-erbalpha is a critical lithium-sensitive component of the circadian clock. Science. 2006 Feb 17;311(5763):1002-5.[16484495 ]
  28. Luo W, Peterson A, Garcia BA, Coombs G, Kofahl B, Heinrich R, Shabanowitz J, Hunt DF, Yost HJ, Virshup DM: Protein phosphatase 1 regulates assembly and function of the beta-catenin degradation complex. EMBO J. 2007 Mar 21;26(6):1511-21. Epub 2007 Feb 22.[17318175 ]
  29. Hashimoto YK, Satoh T, Okamoto M, Takemori H: Importance of autophosphorylation at Ser186 in the A-loop of salt inducible kinase 1 for its sustained kinase activity. J Cell Biochem. 2008 Aug 1;104(5):1724-39. doi: 10.1002/jcb.21737.[18348280 ]
  30. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.[18691976 ]
  31. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31.[18669648 ]
  32. Kandasamy AD, Schulz R: Glycogen synthase kinase-3beta is activated by matrix metalloproteinase-2 mediated proteolysis in cardiomyoblasts. Cardiovasc Res. 2009 Sep 1;83(4):698-706. doi: 10.1093/cvr/cvp175. Epub 2009 Jun 3.[19493954 ]
  33. Zaoui K, Benseddik K, Daou P, Salaun D, Badache A: ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18517-22. doi: 10.1073/pnas.1000975107. Epub 2010 Oct 11.[20937854 ]
  34. Ali A, Hoeflich KP, Woodgett JR: Glycogen synthase kinase-3: properties, functions, and regulation. Chem Rev. 2001 Aug;101(8):2527-40.[11749387 ]
  35. Lee J, Kim MS: The role of GSK3 in glucose homeostasis and the development of insulin resistance. Diabetes Res Clin Pract. 2007 Sep;77 Suppl 1:S49-57. Epub 2007 May 2.[17478001 ]
  36. Rayasam GV, Tulasi VK, Sodhi R, Davis JA, Ray A: Glycogen synthase kinase 3: more than a namesake. Br J Pharmacol. 2009 Mar;156(6):885-98. doi: 10.1111/j.1476-5381.2008.00085.x. Epub 2009 Mar 4.[19366350 ]
  37. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475.[20068231 ]
  38. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17.[21269460 ]
  39. Bose A, Mouton-Liger F, Paquet C, Mazot P, Vigny M, Gray F, Hugon J: Modulation of tau phosphorylation by the kinase PKR: implications in Alzheimer's disease. Brain Pathol. 2011 Mar;21(2):189-200. doi: 10.1111/j.1750-3639.2010.00437.x. Epub 2010 Oct 3.[21029237 ]
  40. Sun L, Lv F, Guo X, Gao G: Glycogen synthase kinase 3beta (GSK3beta) modulates antiviral activity of zinc-finger antiviral protein (ZAP). J Biol Chem. 2012 Jun 29;287(27):22882-8. doi: 10.1074/jbc.M111.306373. Epub 2012 Apr 18.[22514281 ]
  41. Feijs KL, Kleine H, Braczynski A, Forst AH, Herzog N, Verheugd P, Linzen U, Kremmer E, Luscher B: ARTD10 substrate identification on protein microarrays: regulation of GSK3beta by mono-ADP-ribosylation. Cell Commun Signal. 2013 Jan 19;11(1):5. doi: 10.1186/1478-811X-11-5.[23332125 ]
  42. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22.[24275569 ]
  43. Dajani R, Fraser E, Roe SM, Young N, Good V, Dale TC, Pearl LH: Crystal structure of glycogen synthase kinase 3 beta: structural basis for phosphate-primed substrate specificity and autoinhibition. Cell. 2001 Jun 15;105(6):721-32.[11440715 ]
  44. Bax B, Carter PS, Lewis C, Guy AR, Bridges A, Tanner R, Pettman G, Mannix C, Culbert AA, Brown MJ, Smith DG, Reith AD: The structure of phosphorylated GSK-3beta complexed with a peptide, FRATtide, that inhibits beta-catenin phosphorylation. Structure. 2001 Dec;9(12):1143-52.[11738041 ]
  45. Dajani R, Fraser E, Roe SM, Yeo M, Good VM, Thompson V, Dale TC, Pearl LH: Structural basis for recruitment of glycogen synthase kinase 3beta to the axin-APC scaffold complex. EMBO J. 2003 Feb 3;22(3):494-501.[12554650 ]
  46. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7.[15489334 ]
  47. Xie D, Gore C, Liu J, Pong RC, Mason R, Hao G, Long M, Kabbani W, Yu L, Zhang H, Chen H, Sun X, Boothman DA, Min W, Hsieh JT: Role of DAB2IP in modulating epithelial-to-mesenchymal transition and prostate cancer metastasis. Proc Natl Acad Sci U S A. 2010 Feb 9;107(6):2485-90. doi: 10.1073/pnas.0908133107. Epub 2010 Jan 13.[20080667 ]
  48. Suenaga Y, Islam SM, Alagu J, Kaneko Y, Kato M, Tanaka Y, Kawana H, Hossain S, Matsumoto D, Yamamoto M, Shoji W, Itami M, Shibata T, Nakamura Y, Ohira M, Haraguchi S, Takatori A, Nakagawara A: NCYM, a Cis-antisense gene of MYCN, encodes a de novo evolved protein that inhibits GSK3beta resulting in the stabilization of MYCN in human neuroblastomas. PLoS Genet. 2014 Jan;10(1):e1003996. doi: 10.1371/journal.pgen.1003996. Epub 2014 Jan 2.[24391509 ]

Related FRC


FRCD ID Name Exact Mass Structure



Maneb




265.284



Quercetin




302.238