Protein-tyrosine kinase 2-beta


NameProtein-tyrosine kinase 2-beta
Synonyms2.7.10.2 CADTK CAK-beta CAKB Calcium-dependent tyrosine kinase Calcium-regulated non-receptor proline-rich tyrosine kinase Cell adhesion kinase beta FADK 2 FAK2 Focal adhesion kinase 2 Proline-rich tyrosine kinase 2 PYK2 RAFTK Related adhesion focal tyrosine kinase
Gene NamePTK2B
OrganismHuman
Amino acid sequence
>lcl|BSEQ0001736|Protein-tyrosine kinase 2-beta
MSGVSEPLSRVKLGTLRRPEGPAEPMVVVPVDVEKEDVRILKVCFYSNSFNPGKNFKLVK
CTVQTEIREIITSILLSGRIGPNIRLAECYGLRLKHMKSDEIHWLHPQMTVGEVQDKYEC
LHVEAEWRYDLQIRYLPEDFMESLKEDRTTLLYFYQQLRNDYMQRYASKVSEGMALQLGC
LELRRFFKDMPHNALDKKSNFELLEKEVGLDLFFPKQMQENLKPKQFRKMIQQTFQQYAS
LREEECVMKFFNTLAGFANIDQETYRCELIQGWNITVDLVIGPKGIRQLTSQDAKPTCLA
EFKQIRSIRCLPLEEGQAVLQLGIEGAPQALSIKTSSLAEAENMADLIDGYCRLQGEHQG
SLIIHPRKDGEKRNSLPQIPMLNLEARRSHLSESCSIESDIYAEIPDETLRRPGGPQYGI
AREDVVLNRILGEGFFGEVYEGVYTNHKGEKINVAVKTCKKDCTLDNKEKFMSEAVIMKN
LDHPHIVKLIGIIEEEPTWIIMELYPYGELGHYLERNKNSLKVLTLVLYSLQICKAMAYL
ESINCVHRDIAVRNILVASPECVKLGDFGLSRYIEDEDYYKASVTRLPIKWMSPESINFR
RFTTASDVWMFAVCMWEILSFGKQPFFWLENKDVIGVLEKGDRLPKPDLCPPVLYTLMTR
CWDYDPSDRPRFTELVCSLSDVYQMEKDIAMEQERNARYRTPKILEPTAFQEPPPKPSRP
KYRPPPQTNLLAPKLQFQVPEGLCASSPTLTSPMEYPSPVNSLHTPPLHRHNVFKRHSMR
EEDFIQPSSREEAQQLWEAEKVKMRQILDKQQKQMVEDYQWLRQEEKSLDPMVYMNDKSP
LTPEKEVGYLEFTGPPQKPPRLGAQSIQPTANLDRTDDLVYLNVMELVRAVLELKNELCQ
LPPEGYVVVVKNVGLTLRKLIGSVDDLLPSLPSSSRTEIEGTQKLLNKDLAELINKMRLA
QQNAVTSLSEECKRQMLTASHTLAVDAKNLLDAVDQAKVLANLAHPPAE
Number of residues1009
Molecular Weight115873.62
Theoretical pI6.16
GO Classification
Functions
    NMDA glutamate receptor activity
    protein tyrosine kinase activity
    receptor binding
    non-membrane spanning protein tyrosine kinase activity
    signal transducer activity
    ATP binding
    calmodulin-dependent protein kinase activity
Processes
    activation of GTPase activity
    positive regulation of peptidyl-tyrosine phosphorylation
    protein autophosphorylation
    positive regulation of JNK cascade
    negative regulation of muscle cell apoptotic process
    response to hypoxia
    angiogenesis
    regulation of establishment of cell polarity
    activation of Janus kinase activity
    regulation of actin cytoskeleton reorganization
    sprouting angiogenesis
    negative regulation of myeloid cell differentiation
    vascular endothelial growth factor receptor signaling pathway
    response to immobilization stress
    ionotropic glutamate receptor signaling pathway
    regulation of inositol trisphosphate biosynthetic process
    blood vessel endothelial cell migration
    cellular response to retinoic acid
    response to mechanical stimulus
    response to glucose
    oocyte maturation
    response to drug
    long-term synaptic potentiation
    regulation of macrophage chemotaxis
    bone resorption
    positive regulation of cell migration
    positive regulation of angiogenesis
    response to lithium ion
    positive regulation of B cell chemotaxis
    cell surface receptor signaling pathway
    cell differentiation
    response to cocaine
    adaptive immune response
    regulation of N-methyl-D-aspartate selective glutamate receptor activity
    cellular defense response
    cellular response to fluid shear stress
    response to cAMP
    positive regulation of cell-matrix adhesion
    regulation of cell shape
    positive regulation of cell growth
    cell migration
    tumor necrosis factor-mediated signaling pathway
    regulation of nitric oxide biosynthetic process
    response to ethanol
    chemokine-mediated signaling pathway
    response to hydrogen peroxide
    positive regulation of neuron projection development
    positive regulation of JUN kinase activity
    positive regulation of cell proliferation
    epidermal growth factor receptor signaling pathway
    neuron projection development
    positive regulation of translation
    regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process
    signal complex assembly
    cytoskeleton organization
    apoptotic process
    positive regulation of reactive oxygen species metabolic process
    negative regulation of potassium ion transport
    positive regulation of protein kinase activity
    response to stress
    innate immune response
    positive regulation of endothelial cell migration
    positive regulation of nitric-oxide synthase activity
    positive regulation of synaptic transmission, glutamatergic
    regulation of release of sequestered calcium ion into cytosol
    negative regulation of neuron apoptotic process
    focal adhesion assembly
    MAPK cascade
    integrin-mediated signaling pathway
    positive regulation of protein ubiquitination involved in ubiquitin-dependent protein catabolic process
    regulation of cell adhesion
    peptidyl-tyrosine autophosphorylation
    stress fiber assembly
    response to hormone
    glial cell proliferation
    signal transduction
    negative regulation of apoptotic process
    positive regulation of excitatory postsynaptic potential
    protein complex assembly
    peptidyl-tyrosine phosphorylation
    positive regulation of ERK1 and ERK2 cascade
    response to osmotic stress
    marginal zone B cell differentiation
    negative regulation of cell proliferation
    response to calcium ion
    regulation of calcium-mediated signaling
    regulation of cGMP biosynthetic process
    positive regulation of cytosolic calcium ion concentration
    positive regulation of phosphatidylinositol 3-kinase activity
    positive regulation of actin filament polymerization
    negative regulation of bone mineralization
    cell adhesion
    protein phosphorylation
    regulation of cGMP-mediated signaling
Components
    cytoskeleton
    nucleoplasm
    neuronal cell body
    nucleus
    perinuclear region of cytoplasm
    dendrite
    cell body
    axon
    growth cone
    cytoplasm
    cell cortex
    focal adhesion
    lamellipodium
    membrane raft
    apical dendrite
    cytosol
    extrinsic component of cytoplasmic side of plasma membrane
    postsynaptic density
    NMDA selective glutamate receptor complex
General FunctionSignal transducer activity
Specific FunctionNon-receptor protein-tyrosine kinase that regulates reorganization of the actin cytoskeleton, cell polarization, cell migration, adhesion, spreading and bone remodeling. Plays a role in the regulation of the humoral immune response, and is required for normal levels of marginal B-cells in the spleen and normal migration of splenic B-cells. Required for normal macrophage polarization and migration towards sites of inflammation. Regulates cytoskeleton rearrangement and cell spreading in T-cells, and contributes to the regulation of T-cell responses. Promotes osteoclastic bone resorption; this requires both PTK2B/PYK2 and SRC. May inhibit differentiation and activity of osteoprogenitor cells. Functions in signaling downstream of integrin and collagen receptors, immune receptors, G-protein coupled receptors (GPCR), cytokine, chemokine and growth factor receptors, and mediates responses to cellular stress. Forms multisubunit signaling complexes with SRC and SRC family members upon activation; this leads to the phosphorylation of additional tyrosine residues, creating binding sites for scaffold proteins, effectors and substrates. Regulates numerous signaling pathways. Promotes activation of phosphatidylinositol 3-kinase and of the AKT1 signaling cascade. Promotes activation of NOS3. Regulates production of the cellular messenger cGMP. Promotes activation of the MAP kinase signaling cascade, including activation of MAPK1/ERK2, MAPK3/ERK1 and MAPK8/JNK1. Promotes activation of Rho family GTPases, such as RHOA and RAC1. Recruits the ubiquitin ligase MDM2 to P53/TP53 in the nucleus, and thereby regulates P53/TP53 activity, P53/TP53 ubiquitination and proteasomal degradation. Acts as a scaffold, binding to both PDPK1 and SRC, thereby allowing SRC to phosphorylate PDPK1 at 'Tyr-9, 'Tyr-373', and 'Tyr-376'. Promotes phosphorylation of NMDA receptors by SRC family members, and thereby contributes to the regulation of NMDA receptor ion channel activity and intracellular Ca(2+) levels. May also regulate potassium ion transport by phosphorylation of potassium channel subunits. Phosphorylates SRC; this increases SRC kinase activity. Phosphorylates ASAP1, NPHP1, KCNA2 and SHC1. Promotes phosphorylation of ASAP2, RHOU and PXN; this requires both SRC and PTK2/PYK2.
Transmembrane Regions
GenBank Protein ID988305
UniProtKB IDQ14289
UniProtKB Entry NameFAK2_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0010615|Protein-tyrosine kinase 2-beta (PTK2B)
ATGTCTGGGGTGTCCGAGCCCCTGAGTCGAGTAAAGTTGGGCACGTTACGCCGGCCTGAA
GGCCCTGCAGAGCCCATGGTGGTGGTACCAGTAGATGTGGAAAAGGAGGACGTGCGTATC
CTCAAGGTCTGCTTCTATAGCAACAGCTTCAATCCTGGGAAAAACTTCAAACTGGTCAAA
TGCACTGTCCAGACGGAGATCCGGGAGATCATCACCTCCATCCTGCTGAGCGGGCGGATC
GGGCCCAACATCCGGTTGGCTGAGTGCTATGGGCTGAGGCTGAAGCACATGAAGTCCGAT
GAGATCCACTGGCTGCACCCACAGATGACGGTGGGTGAGGTGCAGGACAAGTATGAGTGT
CTGCACGTGGAAGCCGAGTGGAGGTATGACCTTCAAATCCGCTACTTGCCAGAAGACTTC
ATGGAGAGCCTGAAGGAGGACAGGACCACGCTGCTCTATTTTTACCAACAGCTCCGGAAC
GACTACATGCAGCGCTACGCCAGCAAGGTCAGCGAGGGCATGGCCCTGCAGCTGGGCTGC
CTGGAGCTCAGGCGGTTCTTCAAGGATATGCCCCACAATGCACTTGACAAGAAGTCCAAC
TTCGAGCTCCTAGAAAAGGAAGTGGGGCTGGACTTGTTTTTCCCAAAGCAGATGCAGGAG
AACTTAAAGCCCAAACAGTTCCGGAAGATGATCCAGCAGACCTTCCAGCAGTACGCCTCG
CTCAGGGAGGAGGAGTGCGTCATGAAGTTCTTCAACACTCTCGCCGGCTTCGCCAACATC
GACCAGGAGACCTACCGCTGTGAACTCATTCAAGGATGGAACATTACTGTGGACCTGGTC
ATTGGCCCTAAAGGGATCCGCCAGCTGACTAGTCAGGACGCAAAGCCCACCTGCCTGGCC
GAGTTCAAGCAGATCAGGTCCATCAGGTGCCTCCCGCTGGAGGAGGGCCAGGCAGTACTT
CAGCTGGGCATTGAAGGTGCCCCCCAGGCCTTGTCCATCAAAACCTCATCCCTAGCAGAG
GCTGAGAACATGGCTGACCTCATAGACGGCTACTGCCGGCTGCAGGGTGAGCACCAAGGC
TCTCTCATCATCCATCCTAGGAAAGATGGTGAGAAGCGGAACAGCCTGCCCCAGATCCCC
ATGCTAAACCTGGAGGCCCGGCGGTCCCACCTCTCAGAGAGCTGCAGCATAGAGTCAGAC
ATCTACGCAGAGATTCCCGACGAAACCCTGCGAAGGCCCGGAGGTCCACAGTATGGCATT
GCCCGTGAAGATGTGGTCCTGAATCGTATTCTTGGGGAAGGCTTTTTTGGGGAGGTCTAT
GAAGGTGTCTACACAAATCACAAAGGGGAGAAAATCAATGTAGCTGTCAAGACCTGCAAG
AAAGACTGCACTCTGGACAACAAGGAGAAGTTCATGAGCGAGGCAGTGATCATGAAGAAC
CTCGACCACCCGCACATCGTGAAGCTGATCGGCATCATTGAAGAGGAGCCCACCTGGATC
ATCATGGAATTGTATCCCTATGGGGAGCTGGGCCACTACCTGGAGCGGAACAAGAACTCC
CTGAAGGTGCTCACCCTCGTGCTGTACTCACTGCAGATATGCAAAGCCATGGCCTACCTG
GAGAGCATCAACTGCGTGCACAGGGACATTGCTGTCCGGAACATCCTGGTGGCCTCCCCT
GAGTGTGTGAAGCTGGGGGACTTTGGTCTTTCCCGGTACATTGAGGACGAGGACTATTAC
AAAGCCTCTGTGACTCGTCTCCCCATCAAATGGATGTCCCCAGAGTCCATTAACTTCCGA
CGCTTCACGACAGCCAGTGACGTCTGGATGTTCGCCGTGTGCATGTGGGAGATCCTGAGC
TTTGGGAAGCAGCCCTTCTTCTGGCTGGAGAACAAGGATGTCATCGGGGTGCTGGAGAAA
GGAGACCGGCTGCCCAAGCCTGATCTCTGTCCACCGGTCCTTTATACCCTCATGACCCGC
TGCTGGGACTACGACCCCAGTGACCGGCCCCGCTTCACCGAGCTGGTGTGCAGCCTCAGT
GACGTTTATCAGATGGAGAAGGACATTGCCATGGAGCAAGAGAGGAATGCTCGCTACCGA
ACCCCCAAAATCTTGGAGCCCACAGCCTTCCAGGAACCCCCACCCAAGCCCAGCCGACCT
AAGTACAGACCCCCTCCGCAAACCAACCTCCTGGCTCCAAAGCTGCAGTTCCAGGTTCCT
GAGGGTCTGTGTGCCAGCTCTCCTACGCTCACCAGCCCTATGGAGTATCCATCTCCCGTT
AACTCACTGCACACCCCACCTCTCCACCGGCACAATGTCTTCAAACGCCACAGCATGCGG
GAGGAGGACTTCATCCAACCCAGCAGCCGAGAAGAGGCCCAGCAGCTGTGGGAGGCTGAA
AAGGTCAAAATGCGGCAAATCCTGGACAAACAGCAGAAGCAGATGGTGGAGGACTACCAG
TGGCTCAGGCAGGAGGAGAAGTCCCTGGACCCCATGGTTTATATGAATGATAAGTCCCCA
TTGACGCCAGAGAAGGAGGTCGGCTACCTGGAGTTCACAGGGCCCCCACAGAAGCCCCCG
AGGCTGGGCGCACAGTCCATCCAGCCCACAGCTAACCTGGACCGGACTGATGACCTGGTG
TACCTCAATGTCATGGAGCTGGTGCGGGCCGTGCTGGAGCTCAAGAATGAGCTCTGTCAG
CTGCCCCCCGAGGGCTACGTGGTGGTGGTGAAGAATGTGGGGCTGACCCTGCGGAAGCTC
ATCGGGAGCGTGGATGATCTCCTGCCTTCCTTGCCGTCATCTTCACGGACAGAGATCGAG
GGCACCCAGAAACTGCTCAACAAAGACCTGGCAGAGCTCATCAACAAGATGCGGCTGGCA
CAGCAGAACGCCGTGACCTCCCTAAGTGAGGAGTGCAAGAGGCAGATGCTGACGGCTTCA
CACACCCTGGCTGTGGACGCCAAGAACCTGCTCGACGCTGTGGACCAGGCCAAGGTTCTG
GCCAATCTGGCCCACCCACCTGCAGAGTGA
GenBank Gene IDU33284
GeneCard IDNone
GenAtlas IDPTK2B
HGNC IDHGNC:9612
Chromosome Location8
Locus8p21.1
References
  1. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM, Plowman GD, Rudy B, Schlessinger J: Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature. 1995 Aug 31;376(6543):737-45.[7544443 ]
  2. Herzog H, Nicholl J, Hort YJ, Sutherland GR, Shine J: Molecular cloning and assignment of FAK2, a novel human focal adhesion kinase, to 8p11.2-p22 by nonisotopic in situ hybridization. Genomics. 1996 Mar 15;32(3):484-6.[8838818 ]
  3. Sasaki H, Nagura K, Ishino M, Tobioka H, Kotani K, Sasaki T: Cloning and characterization of cell adhesion kinase beta, a novel protein-tyrosine kinase of the focal adhesion kinase subfamily. J Biol Chem. 1995 Sep 8;270(36):21206-19.[7673154 ]
  4. Avraham S, London R, Fu Y, Ota S, Hiregowdara D, Li J, Jiang S, Pasztor LM, White RA, Groopman JE, et al.: Identification and characterization of a novel related adhesion focal tyrosine kinase (RAFTK) from megakaryocytes and brain. J Biol Chem. 1995 Nov 17;270(46):27742-51.[7499242 ]
  5. Li X, Hunter D, Morris J, Haskill JS, Earp HS: A calcium-dependent tyrosine kinase splice variant in human monocytes. Activation by a two-stage process involving adherence and a subsequent intracellular signal. J Biol Chem. 1998 Apr 17;273(16):9361-4.[9545257 ]
  6. Gao C, Blystone SD: A Pyk2-Vav1 complex is recruited to beta3-adhesion sites to initiate Rho activation. Biochem J. 2009 Apr 28;420(1):49-56. doi: 10.1042/BJ20090037.[19207108 ]
  7. Allen JG, Lee MR, Han CY, Scherrer J, Flynn S, Boucher C, Zhao H, O'Connor AB, Roveto P, Bauer D, Graceffa R, Richards WG, Babij P: Identification of small molecule inhibitors of proline-rich tyrosine kinase 2 (Pyk2) with osteogenic activity in osteoblast cells. Bioorg Med Chem Lett. 2009 Sep 1;19(17):4924-8. doi: 10.1016/j.bmcl.2009.07.084. Epub 2009 Jul 22.[19648005 ]
  8. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J: A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature. 1996 Oct 10;383(6600):547-50.[8849729 ]
  9. Tokiwa G, Dikic I, Lev S, Schlessinger J: Activation of Pyk2 by stress signals and coupling with JNK signaling pathway. Science. 1996 Aug 9;273(5276):792-4.[8670418 ]
  10. Matsuya M, Sasaki H, Aoto H, Mitaka T, Nagura K, Ohba T, Ishino M, Takahashi S, Suzuki R, Sasaki T: Cell adhesion kinase beta forms a complex with a new member, Hic-5, of proteins localized at focal adhesions. J Biol Chem. 1998 Jan 9;273(2):1003-14.[9422762 ]
  11. Andreev J, Simon JP, Sabatini DD, Kam J, Plowman G, Randazzo PA, Schlessinger J: Identification of a new Pyk2 target protein with Arf-GAP activity. Mol Cell Biol. 1999 Mar;19(3):2338-50.[10022920 ]
  12. Ueda H, Abbi S, Zheng C, Guan JL: Suppression of Pyk2 kinase and cellular activities by FIP200. J Cell Biol. 2000 Apr 17;149(2):423-30.[10769033 ]
  13. Benzing T, Gerke P, Hopker K, Hildebrandt F, Kim E, Walz G: Nephrocystin interacts with Pyk2, p130(Cas), and tensin and triggers phosphorylation of Pyk2. Proc Natl Acad Sci U S A. 2001 Aug 14;98(17):9784-9. Epub 2001 Aug 7.[11493697 ]
  14. Kruljac-Letunic A, Moelleken J, Kallin A, Wieland F, Blaukat A: The tyrosine kinase Pyk2 regulates Arf1 activity by phosphorylation and inhibition of the Arf-GTPase-activating protein ASAP1. J Biol Chem. 2003 Aug 8;278(32):29560-70. Epub 2003 May 27.[12771146 ]
  15. Takahashi T, Yamashita H, Nagano Y, Nakamura T, Ohmori H, Avraham H, Avraham S, Yasuda M, Matsumoto M: Identification and characterization of a novel Pyk2/related adhesion focal tyrosine kinase-associated protein that inhibits alpha-synuclein phosphorylation. J Biol Chem. 2003 Oct 24;278(43):42225-33. Epub 2003 Jul 31.[12893833 ]
  16. Taniyama Y, Weber DS, Rocic P, Hilenski L, Akers ML, Park J, Hemmings BA, Alexander RW, Griendling KK: Pyk2- and Src-dependent tyrosine phosphorylation of PDK1 regulates focal adhesions. Mol Cell Biol. 2003 Nov;23(22):8019-29.[14585963 ]
  17. Salomon AR, Ficarro SB, Brill LM, Brinker A, Phung QT, Ericson C, Sauer K, Brock A, Horn DM, Schultz PG, Peters EC: Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc Natl Acad Sci U S A. 2003 Jan 21;100(2):443-8. Epub 2003 Jan 9.[12522270 ]
  18. Dylla SJ, Deyle DR, Theunissen K, Padurean AM, Verfaillie CM: Integrin engagement-induced inhibition of human myelopoiesis is mediated by proline-rich tyrosine kinase 2 gene products. Exp Hematol. 2004 Apr;32(4):365-74.[15050747 ]
  19. Park SY, Avraham HK, Avraham S: RAFTK/Pyk2 activation is mediated by trans-acting autophosphorylation in a Src-independent manner. J Biol Chem. 2004 Aug 6;279(32):33315-22. Epub 2004 May 27.[15166227 ]
  20. Sahu SN, Nunez S, Bai G, Gupta A: Interaction of Pyk2 and PTP-PEST with leupaxin in prostate cancer cells. Am J Physiol Cell Physiol. 2007 Jun;292(6):C2288-96. Epub 2007 Feb 28.[17329398 ]
  21. Hjorthaug HS, Aasheim HC: Ephrin-A1 stimulates migration of CD8+CCR7+ T lymphocytes. Eur J Immunol. 2007 Aug;37(8):2326-36.[17634955 ]
  22. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C, Richter D, Emerson E, Lin J, Kath J, Coleman K, Yao L, Martinez-Alsina L, Lorenzen M, Berliner M, Luzzio M, Patel N, Schmitt E, LaGreca S, Jani J, Wessel M, Marr E, Griffor M, Vajdos F: Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res. 2008 Mar 15;68(6):1935-44. doi: 10.1158/0008-5472.CAN-07-5155.[18339875 ]
  23. Sun CK, Man K, Ng KT, Ho JW, Lim ZX, Cheng Q, Lo CM, Poon RT, Fan ST: Proline-rich tyrosine kinase 2 (Pyk2) promotes proliferation and invasiveness of hepatocellular carcinoma cells through c-Src/ERK activation. Carcinogenesis. 2008 Nov;29(11):2096-105. doi: 10.1093/carcin/bgn203. Epub 2008 Sep 1.[18765415 ]
  24. Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gambaryan S, Sickmann A: Phosphoproteome of resting human platelets. J Proteome Res. 2008 Feb;7(2):526-34. Epub 2007 Dec 19.[18088087 ]
  25. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.[18691976 ]
  26. Ruusala A, Aspenstrom P: The atypical Rho GTPase Wrch1 collaborates with the nonreceptor tyrosine kinases Pyk2 and Src in regulating cytoskeletal dynamics. Mol Cell Biol. 2008 Mar;28(5):1802-14. Epub 2007 Dec 17.[18086875 ]
  27. Xu J, Gao XP, Ramchandran R, Zhao YY, Vogel SM, Malik AB: Nonmuscle myosin light-chain kinase mediates neutrophil transmigration in sepsis-induced lung inflammation by activating beta2 integrins. Nat Immunol. 2008 Aug;9(8):880-6. doi: 10.1038/ni.1628. Epub 2008 Jun 29.[18587400 ]
  28. Oppermann FS, Gnad F, Olsen JV, Hornberger R, Greff Z, Keri G, Mann M, Daub H: Large-scale proteomics analysis of the human kinome. Mol Cell Proteomics. 2009 Jul;8(7):1751-64. doi: 10.1074/mcp.M800588-MCP200. Epub 2009 Apr 15.[19369195 ]
  29. Shen X, Xi G, Radhakrishnan Y, Clemmons DR: Recruitment of Pyk2 to SHPS-1 signaling complex is required for IGF-I-dependent mitogenic signaling in vascular smooth muscle cells. Cell Mol Life Sci. 2010 Nov;67(22):3893-903. doi: 10.1007/s00018-010-0411-x. Epub 2010 Jun 3.[20521079 ]
  30. Lim ST, Miller NL, Nam JO, Chen XL, Lim Y, Schlaepfer DD: Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival. J Biol Chem. 2010 Jan 15;285(3):1743-53. doi: 10.1074/jbc.M109.064212. Epub 2009 Oct 30.[19880522 ]
  31. Collins M, Bartelt RR, Houtman JC: T cell receptor activation leads to two distinct phases of Pyk2 activation and actin cytoskeletal rearrangement in human T cells. Mol Immunol. 2010 May;47(9):1665-74. doi: 10.1016/j.molimm.2010.03.009. Epub 2010 Apr 9.[20381867 ]
  32. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17.[21269460 ]
  33. Liebau MC, Hopker K, Muller RU, Schmedding I, Zank S, Schairer B, Fabretti F, Hohne M, Bartram MP, Dafinger C, Hackl M, Burst V, Habbig S, Zentgraf H, Blaukat A, Walz G, Benzing T, Schermer B: Nephrocystin-4 regulates Pyk2-induced tyrosine phosphorylation of nephrocystin-1 to control targeting to monocilia. J Biol Chem. 2011 Apr 22;286(16):14237-45. doi: 10.1074/jbc.M110.165464. Epub 2011 Feb 28.[21357692 ]
  34. Sun CK, Ng KT, Lim ZX, Cheng Q, Lo CM, Poon RT, Man K, Wong N, Fan ST: Proline-rich tyrosine kinase 2 (Pyk2) promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition. PLoS One. 2011 Apr 20;6(4):e18878. doi: 10.1371/journal.pone.0018878.[21533080 ]
  35. Ostergaard HL, Lysechko TL: Focal adhesion kinase-related protein tyrosine kinase Pyk2 in T-cell activation and function. Immunol Res. 2005;31(3):267-82.[15888917 ]
  36. Lipinski CA, Loftus JC: Targeting Pyk2 for therapeutic intervention. Expert Opin Ther Targets. 2010 Jan;14(1):95-108. doi: 10.1517/14728220903473194.[20001213 ]
  37. Schaller MD: Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci. 2010 Apr 1;123(Pt 7):1007-13. doi: 10.1242/jcs.045112.[20332118 ]
  38. Felty Q: Redox sensitive Pyk2 as a target for therapeutics in breast cancer. Front Biosci (Landmark Ed). 2011 Jan 1;16:568-77.[21196189 ]
  39. Lulo J, Yuzawa S, Schlessinger J: Crystal structures of free and ligand-bound focal adhesion targeting domain of Pyk2. Biochem Biophys Res Commun. 2009 Jun 5;383(3):347-52. doi: 10.1016/j.bbrc.2009.04.011. Epub 2009 Apr 7.[19358827 ]
  40. Walker DP, Zawistoski MP, McGlynn MA, Li JC, Kung DW, Bonnette PC, Baumann A, Buckbinder L, Houser JA, Boer J, Mistry A, Han S, Xing L, Guzman-Perez A: Sulfoximine-substituted trifluoromethylpyrimidine analogs as inhibitors of proline-rich tyrosine kinase 2 (PYK2) show reduced hERG activity. Bioorg Med Chem Lett. 2009 Jun 15;19(12):3253-8. doi: 10.1016/j.bmcl.2009.04.093. Epub 2009 Apr 24.[19428251 ]
  41. Han S, Mistry A, Chang JS, Cunningham D, Griffor M, Bonnette PC, Wang H, Chrunyk BA, Aspnes GE, Walker DP, Brosius AD, Buckbinder L: Structural characterization of proline-rich tyrosine kinase 2 (PYK2) reveals a unique (DFG-out) conformation and enables inhibitor design. J Biol Chem. 2009 May 8;284(19):13193-201. doi: 10.1074/jbc.M809038200. Epub 2009 Feb 25.[19244237 ]
  42. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, Davies H, Teague J, Butler A, Stevens C, Edkins S, O'Meara S, Vastrik I, Schmidt EE, Avis T, Barthorpe S, Bhamra G, Buck G, Choudhury B, Clements J, Cole J, Dicks E, Forbes S, Gray K, Halliday K, Harrison R, Hills K, Hinton J, Jenkinson A, Jones D, Menzies A, Mironenko T, Perry J, Raine K, Richardson D, Shepherd R, Small A, Tofts C, Varian J, Webb T, West S, Widaa S, Yates A, Cahill DP, Louis DN, Goldstraw P, Nicholson AG, Brasseur F, Looijenga L, Weber BL, Chiew YE, DeFazio A, Greaves MF, Green AR, Campbell P, Birney E, Easton DF, Chenevix-Trench G, Tan MH, Khoo SK, Teh BT, Yuen ST, Leung SY, Wooster R, Futreal PA, Stratton MR: Patterns of somatic mutation in human cancer genomes. Nature. 2007 Mar 8;446(7132):153-8.[17344846 ]
  43. Nusbaum C, Mikkelsen TS, Zody MC, Asakawa S, Taudien S, Garber M, Kodira CD, Schueler MG, Shimizu A, Whittaker CA, Chang JL, Cuomo CA, Dewar K, FitzGerald MG, Yang X, Allen NR, Anderson S, Asakawa T, Blechschmidt K, Bloom T, Borowsky ML, Butler J, Cook A, Corum B, DeArellano K, DeCaprio D, Dooley KT, Dorris L 3rd, Engels R, Glockner G, Hafez N, Hagopian DS, Hall JL, Ishikawa SK, Jaffe DB, Kamat A, Kudoh J, Lehmann R, Lokitsang T, Macdonald P, Major JE, Matthews CD, Mauceli E, Menzel U, Mihalev AH, Minoshima S, Murayama Y, Naylor JW, Nicol R, Nguyen C, O'Leary SB, O'Neill K, Parker SC, Polley A, Raymond CK, Reichwald K, Rodriguez J, Sasaki T, Schilhabel M, Siddiqui R, Smith CL, Sneddon TP, Talamas JA, Tenzin P, Topham K, Venkataraman V, Wen G, Yamazaki S, Young SK, Zeng Q, Zimmer AR, Rosenthal A, Birren BW, Platzer M, Shimizu N, Lander ES: DNA sequence and analysis of human chromosome 8. Nature. 2006 Jan 19;439(7074):331-5.[16421571 ]
  44. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7.[15489334 ]
  45. Rufanova VA, Alexanian A, Wakatsuki T, Lerner A, Sorokin A: Pyk2 mediates endothelin-1 signaling via p130Cas/BCAR3 cascade and regulates human glomerular mesangial cell adhesion and spreading. J Cell Physiol. 2009 Apr;219(1):45-56. doi: 10.1002/jcp.21649.[19086031 ]
  46. Collins M, Tremblay M, Chapman N, Curtiss M, Rothman PB, Houtman JC: The T cell receptor-mediated phosphorylation of Pyk2 tyrosines 402 and 580 occurs via a distinct mechanism than other receptor systems. J Leukoc Biol. 2010 Apr;87(4):691-701. doi: 10.1189/jlb.0409227. Epub 2009 Dec 22.[20028775 ]
  47. Walker DP, Bi FC, Kalgutkar AS, Bauman JN, Zhao SX, Soglia JR, Aspnes GE, Kung DW, Klug-McLeod J, Zawistoski MP, McGlynn MA, Oliver R, Dunn M, Li JC, Richter DT, Cooper BA, Kath JC, Hulford CA, Autry CL, Luzzio MJ, Ung EJ, Roberts WG, Bonnette PC, Buckbinder L, Mistry A, Griffor MC, Han S, Guzman-Perez A: Trifluoromethylpyrimidine-based inhibitors of proline-rich tyrosine kinase 2 (PYK2): structure-activity relationships and strategies for the elimination of reactive metabolite formation. Bioorg Med Chem Lett. 2008 Dec 1;18(23):6071-7. doi: 10.1016/j.bmcl.2008.10.030. Epub 2008 Oct 11.[18951788 ]

Related FRC


FRCD ID Name Exact Mass Structure



Genistein




270.24