NAD-dependent protein deacetylase sirtuin-1
Name | NAD-dependent protein deacetylase sirtuin-1 |
---|---|
Synonyms | 3.5.1.- hSIR2 hSIRT1 Regulatory protein SIR2 homolog 1 SIR2-like protein 1 SIR2L1 |
Gene Name | SIRT1 |
Organism | Human |
Amino acid sequence | >lcl|BSEQ0004833|NAD-dependent protein deacetylase sirtuin-1 MADEAALALQPGGSPSAAGADREAASSPAGEPLRKRPRRDGPGLERSPGEPGGAAPEREV PAAARGCPGAAAAALWREAEAEAAAAGGEQEAQATAAAGEGDNGPGLQGPSREPPLADNL YDEDDDDEGEEEEEAAAAAIGYRDNLLFGDEIITNGFHSCESDEEDRASHASSSDWTPRP RIGPYTFVQQHLMIGTDPRTILKDLLPETIPPPELDDMTLWQIVINILSEPPKRKKRKDI NTIEDAVKLLQECKKIIVLTGAGVSVSCGIPDFRSRDGIYARLAVDFPDLPDPQAMFDIE YFRKDPRPFFKFAKEIYPGQFQPSLCHKFIALSDKEGKLLRNYTQNIDTLEQVAGIQRII QCHGSFATASCLICKYKVDCEAVRGDIFNQVVPRCPRCPADEPLAIMKPEIVFFGENLPE QFHRAMKYDKDEVDLLIVIGSSLKVRPVALIPSSIPHEVPQILINREPLPHLHFDVELLG DCDVIINELCHRLGGEYAKLCCNPVKLSEITEKPPRTQKELAYLSELPPTPLHVSEDSSS PERTSPPDSSVIVTLLDQAAKSNDDLDVSESKGCMEEKPQEVQTSRNVESIAEQMENPDL KNVGSSTGEKNERTSVAGTVRKCWPNRVAKEQISRRLDGNQYLFLPPNRYIFHGAEVYSD SEDDVLSSSSCGSNSDSGTCQSPSLEEPMEDESEIEEFYNGLEDEPDVPERAGGAGFGTD GDDQEAINEAISVKQEVTDMNYPSNKS |
Number of residues | 747 |
Molecular Weight | 81680.06 |
Theoretical pI | 4.29 |
GO Classification |
Functions
metal ion binding protein C-terminus binding core promoter sequence-specific DNA binding transcription corepressor activity histone binding histone deacetylase activity keratin filament binding HLH domain binding deacetylase activity NAD-dependent histone deacetylase activity (H3-K9 specific) p53 binding protein deacetylase activity enzyme binding bHLH transcription factor binding NAD+ binding identical protein binding NAD-dependent histone deacetylase activity transcription factor binding nuclear hormone receptor binding NAD-dependent protein deacetylase activity mitogen-activated protein kinase binding Processes
circadian regulation of gene expression negative regulation of cAMP-dependent protein kinase activity negative regulation of helicase activity negative regulation of gene expression positive regulation of macrophage apoptotic process ovulation from ovarian follicle negative regulation of protein kinase B signaling white fat cell differentiation cellular response to hydrogen peroxide negative regulation of protein acetylation cellular response to DNA damage stimulus cellular triglyceride homeostasis pyrimidine dimer repair by nucleotide-excision repair muscle organ development negative regulation of transcription from RNA polymerase II promoter negative regulation of gene expression, epigenetic histone deacetylation negative regulation of transforming growth factor beta receptor signaling pathway behavioral response to starvation positive regulation of endothelial cell proliferation positive regulation of apoptotic process regulation of endodeoxyribonuclease activity regulation of glucose metabolic process negative regulation of phosphorylation angiogenesis regulation of gene expression, epigenetic negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway establishment of chromatin silencing regulation of peroxisome proliferator activated receptor signaling pathway negative regulation of DNA damage response, signal transduction by p53 class mediator positive regulation of protein phosphorylation cell aging regulation of protein serine/threonine kinase activity proteasome-mediated ubiquitin-dependent protein catabolic process histone H3 deacetylation negative regulation of cellular senescence cholesterol homeostasis cellular response to heat chromatin silencing chromatin silencing at rDNA negative regulation of cellular response to testosterone stimulus protein destabilization regulation of cell proliferation regulation of smooth muscle cell apoptotic process positive regulation of cysteine-type endopeptidase activity involved in apoptotic process negative regulation of androgen receptor signaling pathway regulation of protein import into nucleus, translocation positive regulation of cholesterol efflux regulation of cellular response to heat negative regulation of histone H3-K14 acetylation positive regulation of macroautophagy intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator fatty acid homeostasis DNA replication protein deacetylation positive regulation of cAMP-dependent protein kinase activity response to insulin positive regulation of MHC class II biosynthetic process rRNA processing negative regulation of NF-kappaB transcription factor activity negative regulation of histone H4-K16 acetylation spermatogenesis chromatin organization cellular response to tumor necrosis factor cellular response to starvation DNA repair UV-damage excision repair stress-induced premature senescence positive regulation of insulin receptor signaling pathway gene expression negative regulation of fat cell differentiation negative regulation of prostaglandin biosynthetic process negative regulation of sequence-specific DNA binding transcription factor activity cellular response to ionizing radiation methylation-dependent chromatin silencing response to hydrogen peroxide negative regulation of TOR signaling response to oxidative stress negative regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator positive regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway positive regulation of adaptive immune response negative regulation of transcription, DNA-templated single strand break repair negative regulation of apoptotic process positive regulation of DNA repair negative regulation of I-kappaB kinase/NF-kappaB signaling positive regulation of histone H3-K9 methylation triglyceride mobilization cellular response to hypoxia positive regulation of cellular senescence negative regulation of cell growth maintenance of chromatin silencing positive regulation of transcription from RNA polymerase II promoter regulation of mitotic cell cycle cellular glucose homeostasis protein ubiquitination DNA synthesis involved in DNA repair peptidyl-lysine acetylation transcription, DNA-templated negative regulation of neuron death peptidyl-lysine deacetylation positive regulation of chromatin silencing viral process negative regulation of peptidyl-lysine acetylation positive regulation of cell proliferation regulation of bile acid biosynthetic process Components
PML body rDNA heterochromatin cytoplasm mitochondrion nuclear chromatin nucleus chromatin silencing complex nuclear heterochromatin nuclear envelope nuclear inner membrane nuclear euchromatin nucleolus nucleoplasm |
General Function | Transcription factor binding |
Specific Function | NAD-dependent protein deacetylase that links transcriptional regulation directly to intracellular energetics and participates in the coordination of several separated cellular functions such as cell cycle, response to DNA damage, metobolism, apoptosis and autophagy. Can modulate chromatin function through deacetylation of histones and can promote alterations in the methylation of histones and DNA, leading to transcriptional repression. Deacetylates a broad range of transcription factors and coregulators, thereby regulating target gene expression positively and negatively. Serves as a sensor of the cytosolic ratio of NAD(+)/NADH which is altered by glucose deprivation and metabolic changes associated with caloric restriction. Is essential in skeletal muscle cell differentiation and in response to low nutrients mediates the inhibitory effect on skeletal myoblast differentiation which also involves 5'-AMP-activated protein kinase (AMPK) and nicotinamide phosphoribosyltransferase (NAMPT). Component of the eNoSC (energy-dependent nucleolar silencing) complex, a complex that mediates silencing of rDNA in response to intracellular energy status and acts by recruiting histone-modifying enzymes. The eNoSC complex is able to sense the energy status of cell: upon glucose starvation, elevation of NAD(+)/NADP(+) ratio activates SIRT1, leading to histone H3 deacetylation followed by dimethylation of H3 at 'Lys-9' (H3K9me2) by SUV39H1 and the formation of silent chromatin in the rDNA locus. Deacetylates 'Lys-266' of SUV39H1, leading to its activation. Inhibits skeletal muscle differentiation by deacetylating PCAF and MYOD1. Deacetylates H2A and 'Lys-26' of HIST1H1E. Deacetylates 'Lys-16' of histone H4 (in vitro). Involved in NR0B2/SHP corepression function through chromatin remodeling: Recruited to LRH1 target gene promoters by NR0B2/SHP thereby stimulating histone H3 and H4 deacetylation leading to transcriptional repression. Proposed to contribute to genomic integrity via positive regulation of telomere length; however, reports on localization to pericentromeric heterochromatin are conflicting. Proposed to play a role in constitutive heterochromatin (CH) formation and/or maintenance through regulation of the available pool of nuclear SUV39H1. Upon oxidative/metabolic stress decreases SUV39H1 degradation by inhibiting SUV39H1 polyubiquitination by MDM2. This increase in SUV39H1 levels enhances SUV39H1 turnover in CH, which in turn seems to accelerate renewal of the heterochromatin which correlates with greater genomic integrity during stress response. Deacetylates 'Lys-382' of p53/TP53 and impairs its ability to induce transcription-dependent proapoptotic program and modulate cell senescence. Deacetylates TAF1B and thereby represses rDNA transcription by the RNA polymerase I. Deacetylates MYC, promotes the association of MYC with MAX and decreases MYC stability leading to compromised transformational capability. Deacetylates FOXO3 in response to oxidative stress thereby increasing its ability to induce cell cycle arrest and resistance to oxidative stress but inhibiting FOXO3-mediated induction of apoptosis transcriptional activity; also leading to FOXO3 ubiquitination and protesomal degradation. Appears to have a similar effect on MLLT7/FOXO4 in regulation of transcriptional activity and apoptosis. Deacetylates DNMT1; thereby impairs DNMT1 methyltransferase-independent transcription repressor activity, modulates DNMT1 cell cycle regulatory function and DNMT1-mediated gene silencing. Deacetylates RELA/NF-kappa-B p65 thereby inhibiting its transactivating potential and augments apoptosis in response to TNF-alpha. Deacetylates HIF1A, KAT5/TIP60, RB1 and HIC1. Deacetylates FOXO1 resulting in its nuclear retention and enhancement of its transcriptional activity leading to increased gluconeogenesis in liver. Inhibits E2F1 transcriptional activity and apoptotic function, possibly by deacetylation. Involved in HES1- and HEY2-mediated transcriptional repression. In cooperation with MYCN seems to be involved in transcriptional repression of DUSP6/MAPK3 leading to MYCN stabilization by phosphorylation at 'Ser-62'. Deacetylates MEF2D. Required for antagonist-mediated transcription suppression of AR-dependent genes which may be linked to local deacetylation of histone H3. Represses HNF1A-mediated transcription. Required for the repression of ESRRG by CREBZF. Modulates AP-1 transcription factor activity. Deacetylates NR1H3 AND NR1H2 and deacetylation of NR1H3 at 'Lys-434' positively regulates transcription of NR1H3:RXR target genes, promotes NR1H3 proteosomal degradation and results in cholesterol efflux; a promoter clearing mechanism after reach round of transcription is proposed. Involved in lipid metabolism. Implicated in regulation of adipogenesis and fat mobilization in white adipocytes by repression of PPARG which probably involves association with NCOR1 and SMRT/NCOR2. Deacetylates ACSS2 leading to its activation, and HMGCS1. Involved in liver and muscle metabolism. Through deacteylation and activation of PPARGC1A is required to activate fatty acid oxidation in skeletel muscle under low-glucose conditions and is involved in glucose homeostasis. Involved in regulation of PPARA and fatty acid beta-oxidation in liver. Involved in positive regulation of insulin secretion in pancreatic beta cells in response to glucose; the function seems to imply transcriptional repression of UCP2. Proposed to deacetylate IRS2 thereby facilitating its insulin-induced tyrosine phosphorylation. Deacetylates SREBF1 isoform SREBP-1C thereby decreasing its stability and transactivation in lipogenic gene expression. Involved in DNA damage response by repressing genes which are involved in DNA repair, such as XPC and TP73, deacetylating XRCC6/Ku70, and faciliting recruitment of additional factors to sites of damaged DNA, such as SIRT1-deacetylated NBN can recruit ATM to initiate DNA repair and SIRT1-deacetylated XPA interacts with RPA2. Also involved in DNA repair of DNA double-strand breaks by homologous recombination and specifically single-strand annealing independently of XRCC6/Ku70 and NBN. Transcriptional suppression of XPC probably involves an E2F4:RBL2 suppressor complex and protein kinase B (AKT) signaling. Transcriptional suppression of TP73 probably involves E2F4 and PCAF. Deacetylates WRN thereby regulating its helicase and exonuclease activities and regulates WRN nuclear translocation in response to DNA damage. Deacetylates APEX1 at 'Lys-6' and 'Lys-7' and stimulates cellular AP endonuclease activity by promoting the association of APEX1 to XRCC1. Increases p53/TP53-mediated transcription-independent apoptosis by blocking nuclear translocation of cytoplasmic p53/TP53 and probably redirecting it to mitochondria. Deacetylates XRCC6/Ku70 at 'Lys-539' and 'Lys-542' causing it to sequester BAX away from mitochondria thereby inhibiting stress-induced apoptosis. Is involved in autophagy, presumably by deacetylating ATG5, ATG7 and MAP1LC3B/ATG8. Deacetylates AKT1 which leads to enhanced binding of AKT1 and PDK1 to PIP3 and promotes their activation. Proposed to play role in regulation of STK11/LBK1-dependent AMPK signaling pathways implicated in cellular senescence which seems to involve the regulation of the acetylation status of STK11/LBK1. Can deacetylate STK11/LBK1 and thereby increase its activity, cytoplasmic localization and association with STRAD; however, the relevance of such activity in normal cells is unclear. In endothelial cells is shown to inhibit STK11/LBK1 activity and to promote its degradation. Deacetylates SMAD7 at 'Lys-64' and 'Lys-70' thereby promoting its degradation. Deacetylates CIITA and augments its MHC class II transactivation and contributes to its stability. Deacteylates MECOM/EVI1. Isoform 2 is shown to deacetylate 'Lys-382' of p53/TP53, however with lower activity than isoform 1. In combination, the two isoforms exert an additive effect. Isoform 2 regulates p53/TP53 expression and cellular stress response and is in turn repressed by p53/TP53 presenting a SIRT1 isoform-dependent auto-regulatory loop. In case of HIV-1 infection, interacts with and deacetylates the viral Tat protein. The viral Tat protein inhibits SIRT1 deacetylation activity toward RELA/NF-kappa-B p65, thereby potentiates its transcriptional activity and SIRT1 is proposed to contribute to T-cell hyperactivation during infection. Deacetylates PML at 'Lys-487' and this deacetylation promotes PML control of PER2 nuclear localization. During the neurogenic transition, repress selective NOTCH1-target genes through histone deacetylation in a BCL6-dependent manner and leading to neuronal differentiation. Regulates the circadian expression of several core clock genes, including ARNTL/BMAL1, RORC, PER2 and CRY1 and plays a critical role in maintaining a controlled rhythmicity in histone acetylation, thereby contributing to circadian chromatin remodeling. Deacetylates ARNTL/BMAL1 and histones at the circadian gene promoters in order to facilitate repression by inhibitory components of the circadian oscillator. Deacetylates PER2, facilitating its ubiquitination and degradation by the proteosome. Protects cardiomyocytes against palmitate-induced apoptosis (PubMed:11672523, PubMed:12006491, PubMed:14976264, PubMed:14980222, PubMed:15126506, PubMed:15152190, PubMed:15205477, PubMed:15469825, PubMed:15692560, PubMed:16079181, PubMed:16166628, PubMed:16892051, PubMed:16998810, PubMed:17283066, PubMed:17334224, PubMed:17505061, PubMed:17612497, PubMed:17620057, PubMed:17936707, PubMed:18203716, PubMed:18296641, PubMed:18662546, PubMed:18687677, PubMed:19188449, PubMed:19220062, PubMed:19364925, PubMed:19690166, PubMed:19934257, PubMed:20097625, PubMed:20100829, PubMed:20203304, PubMed:20375098, PubMed:20620956, PubMed:20670893, PubMed:20817729, PubMed:20975832, PubMed:21149730, PubMed:21245319, PubMed:21471201, PubMed:21504832, PubMed:21555002, PubMed:21698133, PubMed:21701047, PubMed:21775285, PubMed:21807113, PubMed:21841822, PubMed:21890893, PubMed:21909281, PubMed:21947282, PubMed:22274616). Deacetylates XBP1 isoform 2; deacetylation decreases protein stability of XBP1 isoform 2 and inhibits its transcriptional activity (PubMed:20955178). Involved in the CCAR2-mediated regulation of PCK1 and NR1D1 (PubMed:24415752). Deacetylates CTNB1 at 'Lys-49' (PubMed:24824780).SirtT1 75 kDa fragment: catalytically inactive 75SirT1 may be involved in regulation of apoptosis. May be involved in protecting chondrocytes from apoptotic death by associating with cytochrome C and interfering with apoptosome assembly. |
Transmembrane Regions | |
GenBank Protein ID | |
UniProtKB ID | Q96EB6 |
UniProtKB Entry Name | SIR1_HUMAN |
Cellular Location | Nucleus |
Gene sequence | >lcl|BSEQ0021930|NAD-dependent protein deacetylase sirtuin-1 (SIRT1) ATGTTTGATATTGAATATTTCAGAAAAGATCCAAGACCATTCTTCAAGTTTGCAAAGGAA ATATATCCTGGACAATTCCAGCCATCTCTCTGTCACAAATTCATAGCCTTGTCAGATAAG GAAGGAAAACTACTTCGCAACTATACCCAGAACATAGACACGCTGGAACAGGTTGCGGGA ATCCAAAGGATAATTCAGTGTCATGGTTCCTTTGCAACAGCATCTTGCCTGATTTGTAAA TACAAAGTTGACTGTGAAGCTGTACGAGGAGATATTTTTAATCAGGTAGTTCCTCGATGT CCTAGGTGCCCAGCTGATGAACCGCTTGCTATCATGAAACCAGAGATTGTGTTTTTTGGT GAAAATTTACCAGAACAGTTTCATAGAGCCATGAAGTATGACAAAGATGAAGTTGACCTC CTCATTGTTATTGGGTCTTCCCTCAAAGTAAGACCAGTAGCACTAATTCCAAGTTCCATA CCCCATGAAGTGCCTCAGATATTAATTAATAGAGAACCTTTGCCTCATCTGCATTTTGAT GTAGAGCTTCTTGGAGACTGTGATGTCATAATTAATGAATTGTGTCATAGGTTAGGTGGT GAATATGCCAAACTTTGCTGTAACCCTGTAAAGCTTTCAGAAATTACTGAAAAACCTCCA CGAACACAAAAAGAATTGGCTTATTTGTCAGAGTTGCCACCCACACCTCTTCATGTTTCA GAAGACTCAAGTTCACCAGAAAGAACTTCACCACCAGATTCTTCAGTGATTGTCACACTT TTAGACCAAGCAGCTAAGAGTAATGATGATTTAGATGTGTCTGAATCAAAAGGTTGTATG GAAGAAAAACCACAGGAAGTACAAACTTCTAGGAATGTTGAAAGTATTGCTGAACAGATG GAAAATCCGGATTTGAAGAATGTTGGTTCTAGTACTGGGGAGAAAAATGAAAGAACTTCA GTGGCTGGAACAGTGAGAAAATGCTGGCCTAATAGAGTGGCAAAGGAGCAGATTAGTAGG CGGCTTGATGGTAATCAGTATCTGTTTTTGCCACCAAATCGTTACATTTTCCATGGCGCT GAGGTATATTCAGACTCTGAAGATGACGTCTTATCCTCTAGTTCTTGTGGCAGTAACAGT GATAGTGGGACATGCCAGAGTCCAAGTTTAGAAGAACCCATGGAGGATGAAAGTGAAATT GAAGAATTCTACAATGGCTTAGAAGATGAGCCTGATGTTCCAGAGAGAGCTGGAGGAGCT GGATTTGGGACTGATGGAGATGATCAAGAGGCAATTAATGAAGCTATATCTGTGAAACAG GAAGTAACAGACATGAACTATCCATCAAACAAATCATAG |
GenBank Gene ID | AF083106 |
GeneCard ID | None |
GenAtlas ID | SIRT1 |
HGNC ID | HGNC:14929 |
Chromosome Location | 10 |
Locus | 10q21.3 |
References |
|
Related FRC
FRCD ID | Name | Exact Mass | Structure |
---|---|---|---|
Genistein |
270.24 |
||
Niacinamide |
122.127 |