Tubulin alpha-1C chain


NameTubulin alpha-1C chain
SynonymsAlpha-tubulin 6 TUBA6 Tubulin alpha-6 chain
Gene NameTUBA1C
OrganismHuman
Amino acid sequence
>lcl|BSEQ0010972|Tubulin alpha-1C chain
MRECISIHVGQAGVQIGNACWELYCLEHGIQPDGQMPSDKTIGGGDDSFNTFFSETGAGK
HVPRAVFVDLEPTVIDEVRTGTYRQLFHPEQLITGKEDAANNYARGHYTIGKEIIDLVLD
RIRKLADQCTGLQGFLVFHSFGGGTGSGFTSLLMERLSVDYGKKSKLEFSIYPAPQVSTA
VVEPYNSILTTHTTLEHSDCAFMVDNEAIYDICRRNLDIERPTYTNLNRLISQIVSSITA
SLRFDGALNVDLTEFQTNLVPYPRIHFPLATYAPVISAEKAYHEQLTVAEITNACFEPAN
QMVKCDPRHGKYMACCLLYRGDVVPKDVNAAIATIKTKRTIQFVDWCPTGFKVGINYQPP
TVVPGGDLAKVQRAVCMLSNTTAVAEAWARLDHKFDLMYAKRAFVHWYVGEGMEEGEFSE
AREDMAALEKDYEEVGADSADGEDEGEEY
Number of residues449
Molecular Weight49894.93
Theoretical pI4.73
GO Classification
Functions
    structural constituent of cytoskeleton
    structural molecule activity
    GTP binding
    GTPase activity
Processes
    protein folding
    cell division
    'de novo' posttranslational protein folding
    cellular protein metabolic process
    cytoskeleton-dependent intracellular transport
    microtubule-based process
Components
    nucleus
    vesicle
    cytoplasm
    microtubule
General FunctionStructural molecule activity
Specific FunctionTubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain.
Transmembrane Regions
GenBank Protein ID13436317
UniProtKB IDQ9BQE3
UniProtKB Entry NameTBA1C_HUMAN
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0002754|1350 bp
ATGCGTGAGTGCATCTCCATCCACGTTGGCCAGGCTGGTGTCCAGATTGGCAATGCCTGC
TGGGAGCTCTACTGCCTGGAACACGGCATCCAGCCCGATGGCCAGATGCCAAGTGACAAG
ACCATTGGGGGAGGAGATGATTCCTTCAACACCTTCTTCAGTGAAACGGGTGCTGGCAAG
CATGTGCCCCGGGCAGTGTTTGTAGACTTGGAACCCACAGTCATTGATGAAGTTCGCACT
GGCACCTACCGCCAGCTCTTCCACCCTGAGCAGCTCATCACAGGCAAGGAAGATGCTGCC
AATAACTATGCCCGAGGGCACTACACCATTGGCAAGGAGATCATTGACCTCGTGTTGGAC
CGAATTCGCAAGCTGGCTGACCAGTGCACCGGTCTTCAGGGCTTCTTGGTTTTCCACAGC
TTTGGTGGGGGAACTGGTTCTGGGTTCACCTCGCTGCTCATGGAACGTCTCTCAGTTGAT
TATGGCAAGAAGTCCAAGCTGGAGTTCTCTATTTACCCGGCGCCCCAGGTTTCCACAGCT
GTAGTTGAGCCCTACAACTCCATCCTCACCACCCACACCACCCTGGAGCACTCTGATTGT
GCCTTCATGGTAGACAATGAGGCCATCTATGACATCTGTCGTAGAAACCTCGATATCGAG
CGCCCAACCTACACTAACCTTAACCGCCTTATTAGCCAGATTGTGTCCTCCATCACTGCT
TCCCTGAGATTTGATGGAGCCCTGAATGTTGACCTGACAGAATTCCAGACCAACCTGGTG
CCCTACCCCCGCATCCACTTCCCTCTGGCCACATATGCCCCTGTCATCTCTGCTGAGAAA
GCCTACCATGAACAGCTTACTGTAGCAGAGATCACCAATGCTTGCTTTGAGCCAGCCAAC
CAGATGGTGAAATGTGACCCTCGCCATGGTAAATACATGGCTTGCTGCCTGTTATACCGT
GGTGACGTGGTTCCCAAAGATGTCAATGCTGCCATTGCCACCATCAAAACCAAGCGTACC
ATCCAGTTTGTGGATTGGTGCCCCACTGGCTTCAAGGTTGGCATTAATTACCAGCCTCCC
ACTGTGGTGCCTGGCGGAGACCTGGCCAAGGTACAGAGAGCTGTGTGCATGCTGAGCAAT
ACCACAGCTGTTGCTGAGGCCTGGGCTCGCCTGGACCACAAGTTTGACCTGATGTATGCC
AAGCGTGCCTTTGTTCACTGGTACGTGGGTGAGGGGATGGAGGAAGGCGAGTTTTCAGAG
GCCCGTGAGGACATGGCTGCCCTTGAGAAGGATTATGAGGAGGTTGGAGCAGATAGTGCT
GACGGAGAGGATGAGGGTGAAGAGTATTAA
GenBank Gene IDBC004949
GeneCard IDNone
GenAtlas IDTUBA1C
HGNC IDHGNC:20768
Chromosome LocationNone
Locus12q12-q14
References
  1. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48.[17081983 ]
  2. Daub H, Olsen JV, Bairlein M, Gnad F, Oppermann FS, Korner R, Greff Z, Keri G, Stemmann O, Mann M: Kinase-selective enrichment enables quantitative phosphoproteomics of the kinome across the cell cycle. Mol Cell. 2008 Aug 8;31(3):438-48. doi: 10.1016/j.molcel.2008.07.007.[18691976 ]
  3. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31.[18669648 ]
  4. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309.[19413330 ]
  5. Rogowski K, Juge F, van Dijk J, Wloga D, Strub JM, Levilliers N, Thomas D, Bre MH, Van Dorsselaer A, Gaertig J, Janke C: Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell. 2009 Jun 12;137(6):1076-87. doi: 10.1016/j.cell.2009.05.020.[19524510 ]
  6. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007.[19690332 ]
  7. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475.[20068231 ]
  8. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17.[21269460 ]
  9. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570.[21406692 ]
  10. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22.[24275569 ]
  11. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7.[15489334 ]

Related FRC


FRCD ID Name Exact Mass Structure



Insulin




5793.602



Mercurol




252.668



Arsenic




74.922



Mercury




200.592



Benzene




78.114



Dimethylarsinate




136.99



Arsenate




141.942



Mercuric chloride




271.492



Arsenobetaine




178.063



Arsenocholine




165.088



Roxarsone




263.037



Nitarsone




247.038



Methylmercuric chloride




252.085



Bisphenol A




228.291



Mercaptomerin




606.009



Meralluride




449.835



Merbromin




751.666



Thiomersal




404.811