Relevant Data

Food Additives Approved by WHO:

Flavouring Substances Approved by European Union:

  • Hexadecanoic acid [show]

General Information

MaintermPALMITIC ACID
Doc TypeASP
CAS Reg.No.(or other ID)57-10-3
Regnum 173.340
172.210
172.860

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID985
IUPAC Namehexadecanoic acid
InChIInChI=1S/C16H32O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16(17)18/h2-15H2,1H3,(H,17,18)
InChI KeyIPCSVZSSVZVIGE-UHFFFAOYSA-N
Canonical SMILESCCCCCCCCCCCCCCCC(=O)O
Molecular FormulaC16H32O2
Wikipediacalcium palmitate

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight256.43
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count2
Rotatable Bond Count14
Complexity178.0
CACTVS Substructure Key Fingerprint A A A D c f B 4 M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G g A A C A A A C A C A g A A C C A A A A g A I A A C Q C A A A A A A A A A A A A A E A A A A A A B I A A A A A Q A A E A A A A A A G I y K C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area37.3
Monoisotopic Mass256.24
Exact Mass256.24
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count18
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9488
Human Intestinal AbsorptionHIA+0.9888
Caco-2 PermeabilityCaco2+0.8326
P-glycoprotein SubstrateNon-substrate0.6321
P-glycoprotein InhibitorNon-inhibitor0.9598
Non-inhibitor0.9277
Renal Organic Cation TransporterNon-inhibitor0.9266
Distribution
Subcellular localizationMitochondria0.5152
Metabolism
CYP450 2C9 SubstrateNon-substrate0.7886
CYP450 2D6 SubstrateNon-substrate0.8956
CYP450 3A4 SubstrateNon-substrate0.6982
CYP450 1A2 InhibitorInhibitor0.8326
CYP450 2C9 InhibitorNon-inhibitor0.8808
CYP450 2D6 InhibitorNon-inhibitor0.9554
CYP450 2C19 InhibitorNon-inhibitor0.9578
CYP450 3A4 InhibitorNon-inhibitor0.9484
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9647
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9322
Non-inhibitor0.8868
AMES ToxicityNon AMES toxic0.9865
CarcinogensNon-carcinogens0.6452
Fish ToxicityHigh FHMT0.9144
Tetrahymena Pyriformis ToxicityHigh TPT0.9990
Honey Bee ToxicityHigh HBT0.6691
BiodegradationReady biodegradable0.8795
Acute Oral ToxicityIV0.6378
Carcinogenicity (Three-class)Non-required0.7057

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-3.5022LogS
Caco-2 Permeability1.3950LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.3275LD50, mol/kg
Fish Toxicity1.8920pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.3852pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of Exposure
Mechanism of Toxicity
Metabolism
Toxicity Values
Lethal Dose
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk Level
Health Effects
Treatment
Reference
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  2. Lloyd B, Halter RJ, Kuchan MJ, Baggs GE, Ryan AS, Masor ML: Formula tolerance in postbreastfed and exclusively formula-fed infants. Pediatrics. 1999 Jan;103(1):E7.[9917487 ]
  3. Katsuta Y, Iida T, Inomata S, Denda M: Unsaturated fatty acids induce calcium influx into keratinocytes and cause abnormal differentiation of epidermis. J Invest Dermatol. 2005 May;124(5):1008-13.[15854043 ]
  4. Mensink RP: Nutrition in lipid disorders. Ther Umsch. 1995 Aug;52(8):509-14.[7676394 ]
  5. Mesiha MS, Ponnapula S, Plakogiannis F: Oral absorption of insulin encapsulated in artificial chyles of bile salts, palmitic acid and alpha-tocopherol dispersions. Int J Pharm. 2002 Dec 5;249(1-2):1-5.[12433429 ]
  6. Dubinin DM, Naidina VP, Zaloguev SN: [Evaluation of human skin function in a sealed room by a chromatographic method]. Kosm Biol Aviakosm Med. 1985 Nov-Dec;19(6):69-73.[2868151 ]
  7. Okun JG, Kolker S, Schulze A, Kohlmuller D, Olgemoller K, Lindner M, Hoffmann GF, Wanders RJ, Mayatepek E: A method for quantitative acylcarnitine profiling in human skin fibroblasts using unlabelled palmitic acid: diagnosis of fatty acid oxidation disorders and differentiation between biochemical phenotypes of MCAD deficiency. Biochim Biophys Acta. 2002 Oct 10;1584(2-3):91-8.[12385891 ]
  8. Guneral F, Bachmann C: Age-related reference values for urinary organic acids in a healthy Turkish pediatric population. Clin Chem. 1994 Jun;40(6):862-6.[8087979 ]
  9. Otsuki T, Oku M: [A study on the effect of cortisol and progesterone on cytosolic arachidonic and palmitic acid concentrations in cultured human myometrial cells]. Nihon Sanka Fujinka Gakkai Zasshi. 1995 Jun;47(6):531-8.[7608616 ]
  10. Draisey TF, Gagneja GL, Thibert RJ: Pulmonary surfactant and amniotic fluid insulin. Obstet Gynecol. 1977 Aug;50(2):197-9.[577607 ]
  11. Florentin E, Athias A, Lagrost L: Modulation of the activity of the human cholesteryl ester transfer protein by carboxylated derivatives. Evidence for 13-cis-retinoic acid as a potent activator of the protein's activity in plasma. Eur J Biochem. 1996 Sep 15;240(3):699-706.[8856073 ]
  12. Urien S, Morin D, Tillement JP: Effect of alpha-1-acid glycoprotein, albumin and palmitic acid on the brain and salivary gland extraction of warfarin in rats. J Pharmacol Exp Ther. 1989 Feb;248(2):781-5.[2918479 ]
  13. Wang J, Zhu F, Pan G: [Diagnosis of chylous ascites with oral administration of 13C-palmitic acid]. Zhonghua Nei Ke Za Zhi. 1996 Jun;35(6):382-4.[9387625 ]
  14. Ip MP, Draisey TF, Thibert RJ, Gagneja GL, Jasey GM: Fetal lung maturity, as assessed by gas-liquid chromatographic determination of phospholipid palmitic acid in amniotic fluid. Clin Chem. 1977 Jan;23(1):35-40.[832370 ]
  15. Messner T, Erkstam UB, Gustafsson IB, Nilsson SB, Vessby B: Diet and dietary markers in Kiruna and Uppsala, Sweden--a comparison. Int J Circumpolar Health. 1997 Apr;56(1-2):21-9.[9300843 ]
  16. A J, Trygg J, Gullberg J, Johansson AI, Jonsson P, Antti H, Marklund SL, Moritz T: Extraction and GC/MS analysis of the human blood plasma metabolome. Anal Chem. 2005 Dec 15;77(24):8086-94.[16351159 ]
  17. Vessby B, Tengblad S, Lithell H: Insulin sensitivity is related to the fatty acid composition of serum lipids and skeletal muscle phospholipids in 70-year-old men. Diabetologia. 1994 Oct;37(10):1044-50.[7851683 ]
  18. Liau YH, Slomiany BL, Slomiany A, Piasek A, Palmer D, Rosenthal WS: Identification of mucus glycoprotein fatty acyltransferase activity in human gastric mucosa. Digestion. 1985;32(1):57-62.[4018446 ]
  19. Hoffmann GF, Meier-Augenstein W, Stockler S, Surtees R, Rating D, Nyhan WL: Physiology and pathophysiology of organic acids in cerebrospinal fluid. J Inherit Metab Dis. 1993;16(4):648-69.[8412012 ]
  20. Cater NB, Denke MA: Behenic acid is a cholesterol-raising saturated fatty acid in humans. Am J Clin Nutr. 2001 Jan;73(1):41-4.[11124748 ]
  21. Thiele I, Swainston N, Fleming RM, Hoppe A, Sahoo S, Aurich MK, Haraldsdottir H, Mo ML, Rolfsson O, Stobbe MD, Thorleifsson SG, Agren R, Bolling C, Bordel S, Chavali AK, Dobson P, Dunn WB, Endler L, Hala D, Hucka M, Hull D, Jameson D, Jamshidi N, Jonsson JJ, Juty N, Keating S, Nookaew I, Le Novere N, Malys N, Mazein A, Papin JA, Price ND, Selkov E Sr, Sigurdsson MI, Simeonidis E, Sonnenschein N, Smallbone K, Sorokin A, van Beek JH, Weichart D, Goryanin I, Nielsen J, Westerhoff HV, Kell DB, Mendes P, Palsson BO: A community-driven global reconstruction of human metabolism. Nat Biotechnol. 2013 May;31(5):419-25. doi: 10.1038/nbt.2488. Epub 2013 Mar 3.[23455439 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassLipids and lipid-like molecules
ClassFatty Acyls
SubclassFatty acids and conjugates
Intermediate Tree NodesNot available
Direct ParentLong-chain fatty acids
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsLong-chain fatty acid - Straight chain fatty acid - Monocarboxylic acid or derivatives - Carboxylic acid - Carboxylic acid derivative - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Carbonyl group - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms.

From ClassyFire


Targets

General Function:
Small molecule binding
Specific Function:
This protein is, quantitatively, the main protein synthesized and secreted in the endometrium from mid-luteal phase of the menstrual cycle and during the first semester of pregnancy.
Gene Name:
PAEP
Uniprot ID:
P09466
Molecular Weight:
20624.015 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Palmitoyl-coa hydrolase activity
Specific Function:
Removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. Prefers acyl chain lengths of 14 to 18 carbons.
Gene Name:
PPT1
Uniprot ID:
P50897
Molecular Weight:
34193.245 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Photoreceptor activity
Specific Function:
Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal.
Gene Name:
RHO
Uniprot ID:
P08100
Molecular Weight:
38892.335 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Vitamin e binding
Specific Function:
Carrier protein. Binds to some hydrophobic molecules and promotes their transfer between the different cellular sites. Binds with high affinity to alpha-tocopherol. Also binds with a weaker affinity to other tocopherols and to tocotrienols. May have a transcriptional activatory activity via its association with alpha-tocopherol. Probably recognizes and binds some squalene structure, suggesting that it may regulate cholesterol biosynthesis by increasing the transfer of squalene to a metabolic active pool in the cell.
Gene Name:
SEC14L2
Uniprot ID:
O76054
Molecular Weight:
46144.9 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Lactose synthase activity
Specific Function:
Regulatory subunit of lactose synthase, changes the substrate specificity of galactosyltransferase in the mammary gland making glucose a good acceptor substrate for this enzyme. This enables LS to synthesize lactose, the major carbohydrate component of milk. In other tissues, galactosyltransferase transfers galactose onto the N-acetylglucosamine of the oligosaccharide chains in glycoproteins.
Gene Name:
LALBA
Uniprot ID:
P00709
Molecular Weight:
16224.695 Da
References
  1. Barbana C, Perez MD, Pocovi C, Sanchez L, Wehbi Z: Interaction of human alpha-lactalbumin with fatty acids: determination of binding parameters. Biochemistry (Mosc). 2008 Jun;73(6):711-6. [18620538 ]
General Function:
Steroid hydroxylase activity
Specific Function:
Cytochromes P450 are a group of heme-thiolate monooxygenases. In liver microsomes, this enzyme is involved in an NADPH-dependent electron transport pathway. It oxidizes a variety of structurally unrelated compounds, including steroids, fatty acids, and xenobiotics. In the epoxidation of arachidonic acid it generates only 14,15- and 11,12-cis-epoxyeicosatrienoic acids. It is the principal enzyme responsible for the metabolism the anti-cancer drug paclitaxel (taxol).
Gene Name:
CYP2C8
Uniprot ID:
P10632
Molecular Weight:
55824.275 Da
References
  1. Schoch GA, Yano JK, Wester MR, Griffin KJ, Stout CD, Johnson EF: Structure of human microsomal cytochrome P450 2C8. Evidence for a peripheral fatty acid binding site. J Biol Chem. 2004 Mar 5;279(10):9497-503. Epub 2003 Dec 15. [14676196 ]
General Function:
Transporter activity
Specific Function:
Lipid transport protein in adipocytes. Binds both long chain fatty acids and retinoic acid. Delivers long-chain fatty acids and retinoic acid to their cognate receptors in the nucleus (By similarity).
Gene Name:
FABP4
Uniprot ID:
P15090
Molecular Weight:
14718.815 Da
General Function:
Transporter activity
Specific Function:
High specificity for fatty acids. Highest affinity for C18 chain length. Decreasing the chain length or introducing double bonds reduces the affinity. May be involved in keratinocyte differentiation.
Gene Name:
FABP5
Uniprot ID:
Q01469
Molecular Weight:
15164.36 Da
General Function:
Oleic acid binding
Specific Function:
FABP are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters.
Gene Name:
FABP3
Uniprot ID:
P05413
Molecular Weight:
14857.93 Da
General Function:
Transporter activity
Specific Function:
FABP are thought to play a role in the intracellular transport of long-chain fatty acids and their acyl-CoA esters. FABP2 is probably involved in triglyceride-rich lipoprotein synthesis. Binds saturated long-chain fatty acids with a high affinity, but binds with a lower affinity to unsaturated long-chain fatty acids. FABP2 may also help maintain energy homeostasis by functioning as a lipid sensor.
Gene Name:
FABP2
Uniprot ID:
P12104
Molecular Weight:
15207.165 Da
General Function:
Zinc ion binding
Specific Function:
Transcription factor. Has a lower transcription activation potential than HNF4-alpha.
Gene Name:
HNF4G
Uniprot ID:
Q14541
Molecular Weight:
45876.235 Da
General Function:
Triacyl lipopeptide binding
Specific Function:
Cooperates with LY96 to mediate the innate immune response to bacterial lipoproteins and other microbial cell wall components. Cooperates with TLR1 or TLR6 to mediate the innate immune response to bacterial lipoproteins or lipopeptides (PubMed:17889651). Acts via MYD88 and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response. May also promote apoptosis in response to lipoproteins (PubMed:10426996). Recognizes mycoplasmal macrophage-activating lipopeptide-2kD (MALP-2), soluble tuberculosis factor (STF), phenol-soluble modulin (PSM) and B.burgdorferi outer surface protein A lipoprotein (OspA-L) cooperatively with TLR6 (PubMed:11441107). Acts as a receptor for M.tuberculosis lipoproteins LprA, LprG, LpqH and PhoS1 (pstS1), some lipoproteins are dependent on other coreceptors (TLR1, CD14 and/or CD36).The lipoproteins act as agonists to modulate antigen presenting cell functions in response to the pathogen (PubMed:19362712). Forms activation clusters composed of several receptors depending on the ligand, these clusters trigger signaling from the cell surface and subsequently are targeted to the Golgi in a lipid-raft dependent pathway. Forms the cluster TLR2:TLR6:CD14:CD36 in response to diacylated lipopeptides and TLR2:TLR1:CD14 in response to triacylated lipopeptides (PubMed:16880211).
Gene Name:
TLR2
Uniprot ID:
O60603
Molecular Weight:
89836.575 Da
Specific Function:
May play a role in vesicular transport from endoplasmic reticulum to Golgi.
Gene Name:
TRAPPC3
Uniprot ID:
O43617
Molecular Weight:
20273.915 Da
General Function:
Transporter activity
Specific Function:
May play a role in lipid transport protein in Schwann cells. May bind cholesterol.
Gene Name:
PMP2
Uniprot ID:
P02689
Molecular Weight:
14909.305 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
Specific Function:
Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis.
Gene Name:
FBF1
Uniprot ID:
Q8TES7
Molecular Weight:
125445.19 Da
References
  1. Krishnakumar SS, Panda D: Spatial relationship between the prodan site, Trp-214, and Cys-34 residues in human serum albumin and loss of structure through incremental unfolding. Biochemistry. 2002 Jun 11;41(23):7443-52. [12044178 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
Gene Name:
PPARA
Uniprot ID:
Q07869
Molecular Weight:
52224.595 Da
References
  1. Murakami K, Ide T, Suzuki M, Mochizuki T, Kadowaki T: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun. 1999 Jul 14;260(3):609-13. [10403814 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Ligand-activated transcription factor. Receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Has a preference for poly-unsaturated fatty acids, such as gamma-linoleic acid and eicosapentanoic acid. Once activated by a ligand, the receptor binds to promoter elements of target genes. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the acyl-CoA oxidase gene. Decreases expression of NPC1L1 once activated by a ligand.
Gene Name:
PPARD
Uniprot ID:
Q03181
Molecular Weight:
49902.99 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Zinc ion binding
Specific Function:
Binds to an ERR-alpha response element (ERRE) containing a single consensus half-site, 5'-TNAAGGTCA-3'. Can bind to the medium-chain acyl coenzyme A dehydrogenase (MCAD) response element NRRE-1 and may act as an important regulator of MCAD promoter. Binds to the C1 region of the lactoferrin gene promoter. Requires dimerization and the coactivator, PGC-1A, for full activity. The ERRalpha/PGC1alpha complex is a regulator of energy metabolism. Induces the expression of PERM1 in the skeletal muscle.
Gene Name:
ESRRA
Uniprot ID:
P11474
Molecular Weight:
45509.11 Da
References
  1. Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
General Function:
Lipid binding
Uniprot ID:
P83812
Molecular Weight:
32173.81 Da
General Function:
Lipid binding
Specific Function:
Binds long-chain fatty acids, such as palmitate, and may play a role in lipid transport or fatty acid metabolism.
Uniprot ID:
Q9X1H9
Molecular Weight:
32574.335 Da

From T3DB