General Information

MaintermL-TRYPTOPHAN
Doc TypeASP
CAS Reg.No.(or other ID)73-22-3
Regnum 172.320

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID6305
IUPAC Name(2S)-2-amino-3-(1H-indol-3-yl)propanoic acid
InChIInChI=1S/C11H12N2O2/c12-9(11(14)15)5-7-6-13-10-4-2-1-3-8(7)10/h1-4,6,9,13H,5,12H2,(H,14,15)/t9-/m0/s1
InChI KeyQIVBCDIJIAJPQS-VIFPVBQESA-N
Canonical SMILESC1=CC=C2C(=C1)C(=CN2)CC(C(=O)O)N
Molecular FormulaC11H12N2O2
WikipediaL-Tryptophan

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight204.229
Hydrogen Bond Donor Count3
Hydrogen Bond Acceptor Count3
Rotatable Bond Count3
Complexity245.0
CACTVS Substructure Key Fingerprint A A A D c c B z M A A A A A A A A A A A A A A A A A A A A W A A A A A w A A A A A A A A A F g B 8 A A A H g A Q C A A A D C j B n g Q 8 y P L J k g C o A z T 3 T A C C g C A x A i A I 2 a G 4 Z J g K I P L A k Z G E Y A h k k A D I y A e Y 2 f K O g A A A A A A C A A A A A A A A A A Q A A A A A A A A A A A = =
Topological Polar Surface Area79.1
Monoisotopic Mass204.09
Exact Mass204.09
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count15
Defined Atom Stereocenter Count1
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9510
Human Intestinal AbsorptionHIA+0.9840
Caco-2 PermeabilityCaco2-0.5943
P-glycoprotein SubstrateNon-substrate0.5988
P-glycoprotein InhibitorNon-inhibitor0.9951
Non-inhibitor0.9779
Renal Organic Cation TransporterNon-inhibitor0.8805
Distribution
Subcellular localizationLysosome0.3925
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8463
CYP450 2D6 SubstrateNon-substrate0.7897
CYP450 3A4 SubstrateNon-substrate0.7841
CYP450 1A2 InhibitorNon-inhibitor0.9531
CYP450 2C9 InhibitorNon-inhibitor0.9481
CYP450 2D6 InhibitorNon-inhibitor0.9307
CYP450 2C19 InhibitorNon-inhibitor0.9644
CYP450 3A4 InhibitorNon-inhibitor0.9432
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9542
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9864
Non-inhibitor0.9402
AMES ToxicityNon AMES toxic0.9284
CarcinogensNon-carcinogens0.9310
Fish ToxicityHigh FHMT0.6819
Tetrahymena Pyriformis ToxicityHigh TPT0.6688
Honey Bee ToxicityLow HBT0.6838
BiodegradationNot ready biodegradable0.8348
Acute Oral ToxicityIV0.6272
Carcinogenicity (Three-class)Non-required0.7121

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-1.2926LogS
Caco-2 Permeability0.1091LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.1785LD50, mol/kg
Fish Toxicity2.1566pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.3419pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureNone
Mechanism of ToxicityA number of important side reactions occur during the catabolism of tryptophan on the pathway to acetoacetate. The first enzyme of the catabolic pathway is an iron porphyrin oxygenase that opens the indole ring. The latter enzyme is highly inducible, its concentration rising almost 10-fold on a diet high in tryptophan. Kynurenine is the first key branch point intermediate in the pathway. Kynurenine undergoes deamniation in a standard transamination reaction yielding kynurenic acid. Kynurenic acid and metabolites have been shown to act as antiexcitotoxics and anticonvulsives. A second side branch reaction produces anthranilic acid plus alanine. Another equivalent of alanine is produced further along the main catabolic pathway, and it is the production of these alanine residues that allows tryptophan to be classified among the glucogenic and ketogenic amino acids. The second important branch point converts kynurenine into 2-amino-3-carboxymuconic semialdehyde, which has two fates. The main flow of carbon elements from this intermediate is to glutarate. An important side reaction in liver is a transamination and several rearrangements to produce limited amounts of nicotinic acid, which leads to production of a small amount of NAD<sup>+</sup> and NADP<sup>+</sup>.
MetabolismHepatic.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsNone
TreatmentNone
Reference
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  2. Sjoberg S, Eriksson M, Nordin C: L-thyroxine treatment and neurotransmitter levels in the cerebrospinal fluid of hypothyroid patients: a pilot study. Eur J Endocrinol. 1998 Nov;139(5):493-7.[9849813 ]
  3. Eklundh T, Eriksson M, Sjoberg S, Nordin C: Monoamine precursors, transmitters and metabolites in cerebrospinal fluid: a prospective study in healthy male subjects. J Psychiatr Res. 1996 May-Jun;30(3):201-8.[8884658 ]
  4. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6.[12297216 ]
  5. Heyes MP, Saito K, Crowley JS, Davis LE, Demitrack MA, Der M, Dilling LA, Elia J, Kruesi MJ, Lackner A, et al.: Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological disease. Brain. 1992 Oct;115 ( Pt 5):1249-73.[1422788 ]
  6. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.[15911239 ]
  7. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24.[14992292 ]
  8. Jonas AJ, Butler IJ: Circumvention of defective neutral amino acid transport in Hartnup disease using tryptophan ethyl ester. J Clin Invest. 1989 Jul;84(1):200-4.[2472426 ]
  9. Guchhait RB, Janson C, Price WH: Validity of plasma factor in schizophrenia as measured by tryptophan uptake. Biol Psychiatry. 1975 Jun;10(3):303-14.[49200 ]
  10. Koskiniemi M, Laakso J, Kuurne T, Laipio M, Harkonen M: Indole levels in human lumbar and ventricular cerebrospinal fluid and the effect of L-tryptophan administration. Acta Neurol Scand. 1985 Feb;71(2):127-32.[2580417 ]
  11. Kennedy JS, Gwirtsman HE, Schmidt DE, Johnson BW, Fielstein E, Salomon RM, Shiavi RG, Ebert MH, Parris WC, Loosen PT: Serial cerebrospinal fluid tryptophan and 5-hydroxy indoleacetic acid concentrations in healthy human subjects. Life Sci. 2002 Aug 23;71(14):1703-15.[12137916 ]
  12. Bender KI, Lutsevich NF, Lutsevich AN, Kupchikov VV: [Endogenous metabolites as modulators of the transport of drugs by serum albumin]. Farmakol Toksikol. 1990 May-Jun;53(3):72-80.[2201566 ]
  13. Heiman-Patterson TD, Bird SJ, Parry GJ, Varga J, Shy ME, Culligan NW, Edelsohn L, Tatarian GT, Heyes MP, Garcia CA, et al.: Peripheral neuropathy associated with eosinophilia-myalgia syndrome. Ann Neurol. 1990 Oct;28(4):522-8.[2174666 ]
  14. Talbert AM, Tranter GE, Holmes E, Francis PL: Determination of drug-plasma protein binding kinetics and equilibria by chromatographic profiling: exemplification of the method using L-tryptophan and albumin. Anal Chem. 2002 Jan 15;74(2):446-52.[11811421 ]
  15. Dunner DL, Heiber S, Perel JM: The effect of L-tryptophan administration on the concentration of probenecid in plasma and cerebrospinal fluid in patients. Psychopharmacology (Berl). 1977 Aug 16;53(3):305-8.[408860 ]
  16. George CF, Millar TW, Hanly PJ, Kryger MH: The effect of L-tryptophan on daytime sleep latency in normals: correlation with blood levels. Sleep. 1989 Aug;12(4):345-53.[2669092 ]
  17. Buczko W, Cylwik D, Stokowska W: [Metabolism of tryptophan via the kynurenine pathway in saliva]. Postepy Hig Med Dosw (Online). 2005;59:283-9.[15995595 ]
  18. Gutsche B, Grun C, Scheutzow D, Herderich M: Tryptophan glycoconjugates in food and human urine. Biochem J. 1999 Oct 1;343 Pt 1:11-9.[10493906 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganoheterocyclic compounds
ClassIndoles and derivatives
SubclassIndolyl carboxylic acids and derivatives
Intermediate Tree NodesNot available
Direct ParentIndolyl carboxylic acids and derivatives
Alternative Parents
Molecular FrameworkAromatic heteropolycyclic compounds
SubstituentsIndolyl carboxylic acid derivative - Alpha-amino acid - Alpha-amino acid or derivatives - L-alpha-amino acid - 3-alkylindole - Indole - Aralkylamine - Benzenoid - Substituted pyrrole - Heteroaromatic compound - Pyrrole - Amino acid or derivatives - Amino acid - Carboxylic acid derivative - Carboxylic acid - Monocarboxylic acid or derivatives - Azacycle - Amine - Primary aliphatic amine - Hydrocarbon derivative - Organic oxide - Organic oxygen compound - Organic nitrogen compound - Carbonyl group - Organonitrogen compound - Organooxygen compound - Primary amine - Organopnictogen compound - Aromatic heteropolycyclic compound
DescriptionThis compound belongs to the class of organic compounds known as indolyl carboxylic acids and derivatives. These are compounds containing a carboxylic acid chain (of at least 2 carbon atoms) linked to an indole ring.

From ClassyFire


Targets

General Function:
Tryptophan-trna ligase activity
Specific Function:
Isoform 1, isoform 2 and T1-TrpRS have aminoacylation activity while T2-TrpRS lacks it. Isoform 2, T1-TrpRS and T2-TrpRS possess angiostatic activity whereas isoform 1 lacks it. T2-TrpRS inhibits fluid shear stress-activated responses of endothelial cells. Regulates ERK, Akt, and eNOS activation pathways that are associated with angiogenesis, cytoskeletal reorganization and shear stress-responsive gene expression.
Gene Name:
WARS
Uniprot ID:
P23381
Molecular Weight:
53164.91 Da
References
  1. Yang XL, Otero FJ, Ewalt KL, Liu J, Swairjo MA, Kohrer C, RajBhandary UL, Skene RJ, McRee DE, Schimmel P: Two conformations of a crystalline human tRNA synthetase-tRNA complex: implications for protein synthesis. EMBO J. 2006 Jun 21;25(12):2919-29. Epub 2006 May 25. [16724112 ]
General Function:
Tryptophan-trna ligase activity
Gene Name:
WARS2
Uniprot ID:
Q9UGM6
Molecular Weight:
40146.265 Da
References
  1. Charriere F, Helgadottir S, Horn EK, Soll D, Schneider A: Dual targeting of a single tRNA(Trp) requires two different tryptophanyl-tRNA synthetases in Trypanosoma brucei. Proc Natl Acad Sci U S A. 2006 May 2;103(18):6847-52. Epub 2006 Apr 24. [16636268 ]
General Function:
Pyrophosphatase activity
Specific Function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular Weight:
57304.435 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Zinc ion binding
Gene Name:
ALPI
Uniprot ID:
P09923
Molecular Weight:
56811.695 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Phospholipase a2 activator activity
Specific Function:
Involved in the maintenance of ubiquitin levels.
Gene Name:
PLAA
Uniprot ID:
Q9Y263
Molecular Weight:
87156.21 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Tryptophan 2,3-dioxygenase activity
Specific Function:
Incorporates oxygen into the indole moiety of tryptophan. Has a broad specificity towards tryptamine and derivatives including D- and L-tryptophan, 5-hydroxytryptophan and serotonin (By similarity).
Gene Name:
TDO2
Uniprot ID:
P48775
Molecular Weight:
47871.215 Da
References
  1. Dolusic E, Larrieu P, Moineaux L, Stroobant V, Pilotte L, Colau D, Pochet L, Van den Eynde B, Masereel B, Wouters J, Frederick R: Tryptophan 2,3-dioxygenase (TDO) inhibitors. 3-(2-(pyridyl)ethenyl)indoles as potential anticancer immunomodulators. J Med Chem. 2011 Aug 11;54(15):5320-34. doi: 10.1021/jm2006782. Epub 2011 Jul 18. [21726069 ]
General Function:
Zinc ion binding
Specific Function:
Can degrade fibronectin, laminin, gelatins of type I, III, IV, and V; collagens III, IV, X, and IX, and cartilage proteoglycans. Activates procollagenase.
Gene Name:
MMP3
Uniprot ID:
P08254
Molecular Weight:
53976.84 Da
References
  1. Ye QZ, Johnson LL, Nordan I, Hupe D, Hupe L: A recombinant human stromelysin catalytic domain identifying tryptophan derivatives as human stromelysin inhibitors. J Med Chem. 1994 Jan 7;37(1):206-9. [8289198 ]
General Function:
Tryptophan-trna ligase activity
Gene Name:
trpS
Uniprot ID:
P00953
Molecular Weight:
37192.385 Da

From T3DB