General Information

MaintermCUPROUS IODIDE
Doc TypeNIL
CAS Reg.No.(or other ID)7681-65-4
Regnum 178.2010
177.2470
582.80
100.155
184.1265

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID6432705
IUPAC Namecopper(1+);iodide
InChIInChI=1S/Cu.HI/h;1H/q+1;/p-1
InChI KeyLSXDOTMGLUJQCM-UHFFFAOYSA-M
Canonical SMILES[Cu+].[I-]
Molecular FormulaCuI
Wikipediacuprous iodide

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight190.45
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count1
Rotatable Bond Count0
Complexity0.0
CACTVS Substructure Key Fingerprint A A A D c Q A A A A A A A g A E A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area0.0
Monoisotopic Mass189.834
Exact Mass189.834
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count2
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count2

From Pubchem


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of ToxicityExcess copper is sequestered within hepatocyte lysosomes, where it is complexed with metallothionein. Copper hepatotoxicity is believed to occur when the lysosomes become saturated and copper accumulates in the nucleus, causing nuclear damage. This damage is possibly a result of oxidative damage, including lipid peroxidation. Copper inhibits the sulfhydryl group enzymes such as glucose-6-phosphate 1-dehydrogenase, glutathione reductase, and paraoxonases, which protect the cell from free oxygen radicals. It also influences gene expression and is a co-factor for oxidative enzymes such as cytochrome C oxidase and lysyl oxidase. In addition, the oxidative stress induced by copper is thought to activate acid sphingomyelinase, which lead to the production of ceramide, an apoptotic signal, as well as cause hemolytic anemia. Copper-induced emesis results from stimulation of the vagus nerve.
MetabolismCopper is mainly absorbed through the gastrointestinal tract, but it can also be inhalated and absorbed dermally. It passes through the basolateral membrane, possibly via regulatory copper transporters, and is transported to the liver and kidney bound to serum albumin. The liver is the critical organ for copper homoeostasis. In the liver and other tissues, copper is stored bound to metallothionein, amino acids, and in association with copper-dependent enzymes, then partitioned for excretion through the bile or incorporation into intra- and extracellular proteins. The transport of copper to the peripheral tissues is accomplished through the plasma attached to serum albumin, ceruloplasmin or low-molecular-weight complexes. Copper may induce the production of metallothionein and ceruloplasmin. The membrane-bound copper transporting adenosine triphosphatase (Cu-ATPase) transports copper ions into and out of cells. Physiologically normal levels of copper in the body are held constant by alterations in the rate and amount of copper absorption, compartmental distribution, and excretion.
Toxicity ValuesNone
Lethal Dose10 to 20 grams for an adult human (copper salts).
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelAcute Oral: 0.01 mg/kg/day Intermediate Oral: 0.01 mg/kg/day
Health EffectsPeople must absorb small amounts of copper every day because copper is essential for good health, however, high levels of copper can be harmful. Very-high doses of copper can cause damage to your liver and kidneys, and can even cause death. Copper may induce allergic responses in sensitive individuals. (L278, L279)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Reference
  1. Brewer GJ: A brand new mechanism for copper toxicity. J Hepatol. 2007 Oct;47(4):621-2. Epub 2007 Jul 23.[17697726 ]
  2. Bardsley PA, Howard P, DeBacker W, Vermeire P, Mairesse M, Ledent C, Radermecker M, Bury T, Ansquer J: Two years treatment with almitrine bismesylate in patients with hypoxic chronic obstructive airways disease. Eur Respir J. 1991 Mar;4(3):308-10.[1907566 ]

From T3DB


Taxonomic Classification

KingdomInorganic compounds
SuperclassMixed metal/non-metal compounds
ClassTransition metal salts
SubclassTransition metal iodides
Intermediate Tree NodesNot available
Direct ParentTransition metal iodides
Alternative Parents
Molecular FrameworkNot available
SubstituentsTransition metal iodide - Inorganic salt
DescriptionThis compound belongs to the class of inorganic compounds known as transition metal iodides. These are inorganic compounds in which the largest halogen atom is Iodine, and the heaviest metal atom is a transition metal.

From ClassyFire


Targets

General Function:
Protein homodimerization activity
Specific Function:
Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis.
Gene Name:
G6PD
Uniprot ID:
P11413
Molecular Weight:
59256.31 Da
References
  1. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene.: http://www.epa.gov/OGWDW/ccl/pdfs/reg_determine2/healthadvisory_ccl2-reg2_dinitrotoluenes.pdf [17697726 ]
General Function:
Nadp binding
Specific Function:
Maintains high levels of reduced glutathione in the cytosol.
Gene Name:
GSR
Uniprot ID:
P00390
Molecular Weight:
56256.565 Da
References
  1. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene.: http://www.epa.gov/OGWDW/ccl/pdfs/reg_determine2/healthadvisory_ccl2-reg2_dinitrotoluenes.pdf [17697726 ]
General Function:
Protein homodimerization activity
Specific Function:
Hydrolyzes the toxic metabolites of a variety of organophosphorus insecticides. Capable of hydrolyzing a broad spectrum of organophosphate substrates and lactones, and a number of aromatic carboxylic acid esters. Mediates an enzymatic protection of low density lipoproteins against oxidative modification and the consequent series of events leading to atheroma formation.
Gene Name:
PON1
Uniprot ID:
P27169
Molecular Weight:
39730.99 Da
References
  1. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene.: http://www.epa.gov/OGWDW/ccl/pdfs/reg_determine2/healthadvisory_ccl2-reg2_dinitrotoluenes.pdf [17697726 ]
General Function:
Protein homodimerization activity
Specific Function:
Has low activity towards the organophosphate paraxon and aromatic carboxylic acid esters. Rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). Hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents.
Gene Name:
PON3
Uniprot ID:
Q15166
Molecular Weight:
39607.185 Da
References
  1. US Environmental Protection Agency (2008). Drinking Water Health Advisory for 2,4-Dinitrotoluene and 2,6-Dinitrotoluene.: http://www.epa.gov/OGWDW/ccl/pdfs/reg_determine2/healthadvisory_ccl2-reg2_dinitrotoluenes.pdf [17697726 ]
Gene Name:
SNCA
Uniprot ID:
P37840
Molecular Weight:
14460.155 Da
References
  1. Davies P, Fontaine SN, Moualla D, Wang X, Wright JA, Brown DR: Amyloidogenic metal-binding proteins: new investigative pathways. Biochem Soc Trans. 2008 Dec;36(Pt 6):1299-303. doi: 10.1042/BST0361299. [19021544 ]
General Function:
Transition metal ion binding
Specific Function:
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).
Gene Name:
APP
Uniprot ID:
P05067
Molecular Weight:
86942.715 Da
References
  1. Davies P, Fontaine SN, Moualla D, Wang X, Wright JA, Brown DR: Amyloidogenic metal-binding proteins: new investigative pathways. Biochem Soc Trans. 2008 Dec;36(Pt 6):1299-303. doi: 10.1042/BST0361299. [19021544 ]

From T3DB