Relevant Data

Food Additives Approved by WHO:

Flavouring Substances Approved by European Union:

  • 3-Methylphenol [show]

General Information

MaintermM-CRESOL
Doc TypeASP
CAS Reg.No.(or other ID)108-39-4
Regnum 175.300
177.2410

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID342
IUPAC Name3-methylphenol
InChIInChI=1S/C7H8O/c1-6-3-2-4-7(8)5-6/h2-5,8H,1H3
InChI KeyRLSSMJSEOOYNOY-UHFFFAOYSA-N
Canonical SMILESCC1=CC(=CC=C1)O
Molecular FormulaC7H8O
Wikipediametacresol

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight108.14
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count1
Rotatable Bond Count0
Complexity70.8
CACTVS Substructure Key Fingerprint A A A D c c B g I A A A A A A A A A A A A A A A A A A A A A A A A A A w A A A A A A A A A A A B A A A A G g A A C A A A D A S A m A A y B o A A A g C A A i B C A A A C A A A g I A A I i A A G C I g I J i K C E R K A c A A k w B E I m A e A w B A O A A A B A A A A A A A A A A I A A A A A A A A A A A A A A A = =
Topological Polar Surface Area20.2
Monoisotopic Mass108.058
Exact Mass108.058
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count8
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.8911
Human Intestinal AbsorptionHIA+0.9960
Caco-2 PermeabilityCaco2+0.9256
P-glycoprotein SubstrateNon-substrate0.7504
P-glycoprotein InhibitorNon-inhibitor0.9753
Non-inhibitor0.9910
Renal Organic Cation TransporterNon-inhibitor0.8770
Distribution
Subcellular localizationMitochondria0.7469
Metabolism
CYP450 2C9 SubstrateNon-substrate0.7251
CYP450 2D6 SubstrateNon-substrate0.8554
CYP450 3A4 SubstrateNon-substrate0.7152
CYP450 1A2 InhibitorInhibitor0.5105
CYP450 2C9 InhibitorNon-inhibitor0.9606
CYP450 2D6 InhibitorNon-inhibitor0.9789
CYP450 2C19 InhibitorNon-inhibitor0.9343
CYP450 3A4 InhibitorNon-inhibitor0.9324
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.8870
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.8281
Non-inhibitor0.9609
AMES ToxicityNon AMES toxic0.9513
CarcinogensNon-carcinogens0.7350
Fish ToxicityHigh FHMT0.6839
Tetrahymena Pyriformis ToxicityHigh TPT0.9286
Honey Bee ToxicityHigh HBT0.8261
BiodegradationReady biodegradable0.6121
Acute Oral ToxicityII0.7716
Carcinogenicity (Three-class)Non-required0.6111

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-0.6374LogS
Caco-2 Permeability1.6148LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.5863LD50, mol/kg
Fish Toxicity1.3626pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.2094pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of Toxicitym-Cresol is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
MetabolismCresols can be absorbed following inhalation, oral, and dermal exposure. Once in the body they can distribute rapidly into many organs and tissues. Cresols undergo oxidative metabolism in the liver and are rapidly eliminated, mostly in the urine, as sulfate or glucuronide conjugates. The activation of cresols by oxidation involves tyrosinase and thyroid peroxidase, forming a reactive quinone methide. Experiments with recombinant P-450s demonstrated cresol metabolism was mediated by several P-450s including CYP2D6, 2C19, 1A2, 1A1, and 2E1.
Toxicity ValuesLD50: 242 mg/kg (Oral, Rat) LD50: 168 mg/kg (Intraperitoneal, Mouse) LD50: 2050 mg/kg (Dermal, Rabbit)
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelIntermediate Oral: 0.1 mg/kg/day Chronic Oral: 0.1 mg/kg/day
Health EffectsAcute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
TreatmentIf the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally.
Reference
  1. Yan Z, Zhong HM, Maher N, Torres R, Leo GC, Caldwell GW, Huebert N: Bioactivation of 4-methylphenol (p-cresol) via cytochrome P450-mediated aromatic oxidation in human liver microsomes. Drug Metab Dispos. 2005 Dec;33(12):1867-76. Epub 2005 Sep 20.[16174805 ]
  2. Yokoi H, Belfort G: High-rate membrane supported aqueous-phase enzymatic conversion in organic solvent. Bioseparation. 1994 Jun;4(3):213-20.[7765181 ]
  3. Oxford JS, Lambkin R, Gibb I, Balasingam S, Chan C, Catchpole A: A throat lozenge containing amyl meta cresol and dichlorobenzyl alcohol has a direct virucidal effect on respiratory syncytial virus, influenza A and SARS-CoV. Antivir Chem Chemother. 2005;16(2):129-34.[15889535 ]
  4. Koetsawang A, Koetsawang S: The use of a condensation product of metacresol sulfonic acid with methanal in the treatment of cervical erosion. J Med Assoc Thai. 1980 Nov;63(11):608-10.[7205102 ]
  5. Malaise J, Leonet J, Goffin E, Lefebvre C, Tennstedt D, Vandeleene B, Buysschaert M, Squifflet JP: Pancreas transplantation for treatment of generalized allergy to human insulin in type 1 diabetes. Transplant Proc. 2005 Jul-Aug;37(6):2839.[16182826 ]
  6. Perez de Salazar JL, Diaz Loya FJ, Garcia Mendoza M: [The trichomonacidal, fungicidal and bactericidal effects of metacresol sulfonic acid polymer with methanal in cervico-vaginitis]. Ginecol Obstet Mex. 1983 Feb;51(310):43-8.[6681370 ]
  7. Hussain K, Campagnolo ER: Suspected cresol poisoning in cattle presented for slaughter. Vet Hum Toxicol. 2002 Feb;44(1):11-4.[11824764 ]
  8. Wang G, Jing F, Su S: [An experimental study of metacresol burn]. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi. 1999 Jul;15(4):305-8.[11593614 ]
  9. Jorgensen JT: Improvement of patient convenience in treatment with growth hormone. J Pediatr Endocrinol. 1994 Apr-Jun;7(2):175-80.[8061763 ]
  10. Rasmussen LH, Zachmann M, Nilsson P: Authentic recombinant human growth hormone. Results of a multicenter clinical trial in patients with growth hormone deficiency. Helv Paediatr Acta. 1989 Jun;43(5-6):443-8.[2663792 ]
  11. Wheeler BJ, Taylor BJ: Successful management of allergy to the insulin excipient metacresol in a child with type 1 diabetes: a case report. J Med Case Rep. 2012 Aug 31;6:263. doi: 10.1186/1752-1947-6-263.[22937994 ]
  12. Morfin de Madrigal A, Lopez Amado G: [500 cases of cervicitis treated with metacresol sulfonic acid]. Ginecol Obstet Mex. 1972 Jan;31(183):83-9.[5007546 ]
  13. Phares KR, Weiser WE, Miller SP, Myers MA, Wade M: Stability and preservative effectiveness of treprostinil sodium after dilution in common intravenous diluents. Am J Health Syst Pharm. 2003 May 1;60(9):916-22.[12756943 ]
  14. Leonet J, Malaise J, Goffin E, Lefebvre C, Tennstedt D, Vandeleene B, Buysschaert M, Squifflet JP: Solitary pancreas transplantation for life-threatening allergy to human insulin. Transpl Int. 2006 Jun;19(6):474-7.[16771868 ]
  15. Clerx V, Van Den Keybus C, Kochuyt A, Goossens A: Drug intolerance reaction to insulin therapy caused by metacresol. Contact Dermatitis. 2003 Mar;48(3):162-3.[12755733 ]
  16. Plantin P, Sassolas B, Guillet MH, Tater D, Guillet G: [Cutaneous allergic accidents caused by insulin. Current aspects apropos of 2 cases]. Ann Dermatol Venereol. 1988;115(8):813-7.[2974269 ]
  17. McSherry TJ: Incompatibility between chlorpromazine and metacresol. Am J Hosp Pharm. 1987 Jul;44(7):1574.[3631086 ]
  18. Gloge A, Langer B, Poppe L, Retey J: The behavior of substrate analogues and secondary deuterium isotope effects in the phenylalanine ammonia-lyase reaction. Arch Biochem Biophys. 1998 Nov 1;359(1):1-7.[9799553 ]
  19. Das Gupta V: Quantitation of meperidine hydrochloride in pharmaceutical dosage forms by high-performance liquid chromatography. J Pharm Sci. 1983 Jun;72(6):695-7.[6875832 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassBenzenoids
ClassPhenols
SubclassCresols
Intermediate Tree NodesNot available
Direct ParentMeta cresols
Alternative Parents
Molecular FrameworkAromatic homomonocyclic compounds
SubstituentsM-cresol - 1-hydroxy-4-unsubstituted benzenoid - 1-hydroxy-2-unsubstituted benzenoid - Toluene - Monocyclic benzene moiety - Organic oxygen compound - Hydrocarbon derivative - Organooxygen compound - Aromatic homomonocyclic compound
DescriptionThis compound belongs to the class of organic compounds known as meta cresols. These are aromatic compounds containing a meta-cresol moiety, which consists of a benzene ring bearing a methyl group and a hydroxyl group at ring positions 1 and 3, respectively.

From ClassyFire


Targets

General Function:
Protease binding
Specific Function:
Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
Gene Name:
INS
Uniprot ID:
P01308
Molecular Weight:
11980.795 Da
References
  1. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
General Function:
Serine hydrolase activity
Specific Function:
Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. Role in neuronal apoptosis.
Gene Name:
ACHE
Uniprot ID:
P22303
Molecular Weight:
67795.525 Da
References
  1. Cardozo MG, Iimura Y, Sugimoto H, Yamanishi Y, Hopfinger AJ: QSAR analyses of the substituted indanone and benzylpiperidine rings of a series of indanone-benzylpiperidine inhibitors of acetylcholinesterase. J Med Chem. 1992 Feb 7;35(3):584-9. [1738151 ]
General Function:
Prostaglandin-endoperoxide synthase activity
Specific Function:
Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells.
Gene Name:
PTGS1
Uniprot ID:
P23219
Molecular Weight:
68685.82 Da
References
  1. Chan CP, Yuan-Soon H, Wang YJ, Lan WH, Chen LI, Chen YJ, Lin BR, Chang MC, Jeng JH: Inhibition of cyclooxygenase activity, platelet aggregation and thromboxane B2 production by two environmental toxicants: m- and o-cresol. Toxicology. 2005 Mar 1;208(1):95-104. [15664436 ]
General Function:
Prostaglandin-endoperoxide synthase activity
Specific Function:
Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays important roles in modulating motility, proliferation and resistance to apoptosis.
Gene Name:
PTGS2
Uniprot ID:
P35354
Molecular Weight:
68995.625 Da
References
  1. Chan CP, Yuan-Soon H, Wang YJ, Lan WH, Chen LI, Chen YJ, Lin BR, Chang MC, Jeng JH: Inhibition of cyclooxygenase activity, platelet aggregation and thromboxane B2 production by two environmental toxicants: m- and o-cresol. Toxicology. 2005 Mar 1;208(1):95-104. [15664436 ]
General Function:
Temperature-gated cation channel activity
Specific Function:
Receptor-activated non-selective cation channel involved in detection of pain and possibly also in cold perception and inner ear function (PubMed:25389312, PubMed:25855297). Has a central role in the pain response to endogenous inflammatory mediators and to a diverse array of volatile irritants, such as mustard oil, cinnamaldehyde, garlic and acrolein, an irritant from tears gas and vehicule exhaust fumes (PubMed:25389312, PubMed:20547126). Is also activated by menthol (in vitro)(PubMed:25389312). Acts also as a ionotropic cannabinoid receptor by being activated by delta(9)-tetrahydrocannabinol (THC), the psychoactive component of marijuana (PubMed:25389312). May be a component for the mechanosensitive transduction channel of hair cells in inner ear, thereby participating in the perception of sounds. Probably operated by a phosphatidylinositol second messenger system (By similarity).
Gene Name:
TRPA1
Uniprot ID:
O75762
Molecular Weight:
127499.88 Da
References
  1. Nilius B, Prenen J, Owsianik G: Irritating channels: the case of TRPA1. J Physiol. 2011 Apr 1;589(Pt 7):1543-9. doi: 10.1113/jphysiol.2010.200717. Epub 2010 Nov 15. [21078588 ]

From T3DB