General Information

MaintermL-CARNITINE
Doc TypeASP
CAS Reg.No.(or other ID)541-15-1
Regnum

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID10917
IUPAC Name(3R)-3-hydroxy-4-(trimethylazaniumyl)butanoate
InChIInChI=1S/C7H15NO3/c1-8(2,3)5-6(9)4-7(10)11/h6,9H,4-5H2,1-3H3/t6-/m1/s1
InChI KeyPHIQHXFUZVPYII-ZCFIWIBFSA-N
Canonical SMILESC[N+](C)(C)CC(CC(=O)[O-])O
Molecular FormulaC7H15NO3
Wikipedialevocarnitine

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight161.201
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count3
Rotatable Bond Count3
Complexity134.0
CACTVS Substructure Key Fingerprint A A A D c c B i M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A H g A A C A A A C B T h g A Y C C A M A A g A I A A C Q C A A A A A A A A A A A A A E I A A A C E B Q A g A A E Q A A F I A A Q A A A k A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area60.4
Monoisotopic Mass161.105
Exact Mass161.105
XLogP3None
XLogP3-AA-0.2
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count11
Defined Atom Stereocenter Count1
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


Toxicity Profile

Route of ExposureIntravenous, Oral. Absolute bioavailability is 15% (tablets or solution). Time to maximum plasma concentration was found to be 3.3 hours.
Mechanism of ToxicityLevocarnitine can be synthesised within the body from the amino acids lysine or methionine. Vitamin C (ascorbic acid) is essential to the synthesis of carnitine. Levocarnitine is a carrier molecule in the transport of long chain fatty acids across the inner mitochondrial membrane. It also exports acyl groups from subcellular organelles and from cells to urine before they accumulate to toxic concentrations. Only the L isomer of carnitine (sometimes called vitamin BT) affects lipid metabolism. Levocarnitine is handled by several proteins in different pathways including carnitine transporters, carnitine translocases, carnitine acetyltransferases and carnitine palmitoyltransferases.
MetabolismAfter oral administration L-carnitine which is unabsorbed is metabolized in the gastrointestinal tract by bacterial microflora. Major metabolites include trimethylamine N-oxide and [3H]-gamma-butyrobetaine. Route of Elimination: Following a single intravenous dose, 73.1 +/- 16% of the dose was excreted in the urine during the 0-24 hour interval. Post administration of oral carnitine supplements, in addition to a high carnitine diet, 58-65% of the administered radioactive dose was recovered from urine and feces in 5-11 days. Half Life: 17.4 hours (elimination) following a single intravenous dose.
Toxicity ValuesLD<sub>50</sub> > 8g/kg (mouse, oral).
Lethal Dose
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk Level
Health Effects
Treatment
Reference
  1. Olpin SE: Fatty acid oxidation defects as a cause of neuromyopathic disease in infants and adults. Clin Lab. 2005;51(5-6):289-306.[15991803 ]
  2. Steiber A, Kerner J, Hoppel CL: Carnitine: a nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 2004 Oct-Dec;25(5-6):455-73.[15363636 ]
  3. Waldner R, Laschan C, Lohninger A, Gessner M, Tuchler H, Huemer M, Spiegel W, Karlic H: Effects of doxorubicin-containing chemotherapy and a combination with L-carnitine on oxidative metabolism in patients with non-Hodgkin lymphoma. J Cancer Res Clin Oncol. 2006 Feb;132(2):121-8. Epub 2005 Nov 8.[16283381 ]
  4. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  5. Shihabi ZK, Oles KS, McCormick CP, Penry JK: Serum and tissue carnitine assay based on dialysis. Clin Chem. 1992 Aug;38(8 Pt 1):1414-7.[1643708 ]
  6. Hoppel CL, Genuth SM: Urinary excretion of acetylcarnitine during human diabetic and fasting ketosis. Am J Physiol. 1982 Aug;243(2):E168-72.[6810706 ]
  7. Wachter S, Vogt M, Kreis R, Boesch C, Bigler P, Hoppeler H, Krahenbuhl S: Long-term administration of L-carnitine to humans: effect on skeletal muscle carnitine content and physical performance. Clin Chim Acta. 2002 Apr;318(1-2):51-61.[11880112 ]
  8. Evans AM, Fornasini G: Pharmacokinetics of L-carnitine. Clin Pharmacokinet. 2003;42(11):941-67.[12908852 ]
  9. Pastoris O, Dossena M, Foppa P, Catapano M, Arbustini E, Bellini O, Dal Bello B, Minzioni G, Ceriana P, Barzaghi N: Effect of L-carnitine on myocardial metabolism: results of a balanced, placebo-controlled, double-blind study in patients undergoing open heart surgery. Pharmacol Res. 1998 Feb;37(2):115-22.[9572066 ]
  10. Stephens FB, Constantin-Teodosiu D, Laithwaite D, Simpson EJ, Greenhaff PL: Insulin stimulates L-carnitine accumulation in human skeletal muscle. FASEB J. 2006 Feb;20(2):377-9. Epub 2005 Dec 20.[16368715 ]
  11. Tamai I, China K, Sai Y, Kobayashi D, Nezu J, Kawahara E, Tsuji A: Na(+)-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim Biophys Acta. 2001 Jun 6;1512(2):273-84.[11406104 ]
  12. Malaguarnera M, Pistone G, Astuto M, Dell'Arte S, Finocchiaro G, Lo Giudice E, Pennisi G: L-Carnitine in the treatment of mild or moderate hepatic encephalopathy. Dig Dis. 2003;21(3):271-5.[14571103 ]
  13. Oey NA, van Vlies N, Wijburg FA, Wanders RJ, Attie-Bitach T, Vaz FM: L-carnitine is synthesized in the human fetal-placental unit: potential roles in placental and fetal metabolism. Placenta. 2006 Aug;27(8):841-6. Epub 2005 Nov 18.[16300828 ]
  14. Feinfeld DA, Kurian P, Cheng JT, Dilimetin G, Arriola MR, Ward L, Manis T, Carvounis CP: Effect of oral L-carnitine on serum myoglobin in hemodialysis patients. Ren Fail. 1996 Jan;18(1):91-6.[8820505 ]
  15. Matalliotakis I, Koumantaki Y, Evageliou A, Matalliotakis G, Goumenou A, Koumantakis E: L-carnitine levels in the seminal plasma of fertile and infertile men: correlation with sperm quality. Int J Fertil Womens Med. 2000 May-Jun;45(3):236-40.[10929687 ]
  16. Vescovo G, Ravara B, Gobbo V, Dalla Libera L: Inflammation and perturbation of the l-carnitine system in heart failure. Eur J Heart Fail. 2005 Oct;7(6):997-1002.[16227137 ]
  17. Lerch R: [The effect of L-carnitine on ischemic heart disease: experimental results]. Praxis (Bern 1994). 1998 Jan 21;87(4):97-100.[9522638 ]
  18. Khademi A, Alleyassin A, Safdarian L, Hamed EA, Rabiee E, Haghaninezhad H: The effects of L-carnitine on sperm parameters in smoker and non-smoker patients with idiopathic sperm abnormalities. J Assist Reprod Genet. 2005 Dec;22(11-12):395-9.[16331536 ]
  19. Stradomska TJ, Tylki-Szymanska A, Bentkowski Z: Very long-chain fatty acids in Rett syndrome. Eur J Pediatr. 1999 Mar;158(3):226-9.[10094444 ]
  20. Lenzi A, Sgro P, Salacone P, Paoli D, Gilio B, Lombardo F, Santulli M, Agarwal A, Gandini L: A placebo-controlled double-blind randomized trial of the use of combined l-carnitine and l-acetyl-carnitine treatment in men with asthenozoospermia. Fertil Steril. 2004 Jun;81(6):1578-84.[15193480 ]
  21. Sinclair C, Gilchrist JM, Hennessey JV, Kandula M: Muscle carnitine in hypo- and hyperthyroidism. Muscle Nerve. 2005 Sep;32(3):357-9.[15803480 ]
  22. Ahmad S: L-carnitine in dialysis patients. Semin Dial. 2001 May-Jun;14(3):209-17.[11422928 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic nitrogen compounds
ClassOrganonitrogen compounds
SubclassQuaternary ammonium salts
Intermediate Tree NodesNot available
Direct ParentCarnitines
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsCarnitine - Beta-hydroxy acid - Short-chain hydroxy acid - Fatty acid - Hydroxy acid - Tetraalkylammonium salt - 1,2-aminoalcohol - Carboxylic acid salt - Secondary alcohol - Carboxylic acid derivative - Carboxylic acid - Monocarboxylic acid or derivatives - Organic oxygen compound - Organooxygen compound - Organic zwitterion - Organic salt - Hydrocarbon derivative - Organic oxide - Carbonyl group - Organopnictogen compound - Amine - Alcohol - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as carnitines. These are organic compounds containing the quaternary ammonium compound carnitine.

From ClassyFire


Targets

General Function:
Symporter activity
Specific Function:
Sodium-ion dependent, high affinity carnitine transporter. Involved in the active cellular uptake of carnitine. Transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Also relative uptake activity ratio of carnitine to TEA is 11.3.
Gene Name:
SLC22A5
Uniprot ID:
O76082
Molecular Weight:
62751.08 Da
References
  1. Todesco L, Bodmer M, Vonwil K, Haussinger D, Krahenbuhl S: Interaction between pivaloylcarnitine and L-carnitine transport into L6 cells overexpressing hOCTN2. Chem Biol Interact. 2009 Aug 14;180(3):472-7. doi: 10.1016/j.cbi.2009.02.014. Epub 2009 Mar 11. [19539806 ]
General Function:
Receptor binding
Specific Function:
Carnitine acetylase is specific for short chain fatty acids. Carnitine acetylase seems to affect the flux through the pyruvate dehydrogenase complex. It may be involved as well in the transport of acetyl-CoA into mitochondria.
Gene Name:
CRAT
Uniprot ID:
P43155
Molecular Weight:
70857.055 Da
References
  1. Cordente AG, Lopez-Vinas E, Vazquez MI, Swiegers JH, Pretorius IS, Gomez-Puertas P, Hegardt FG, Asins G, Serra D: Redesign of carnitine acetyltransferase specificity by protein engineering. J Biol Chem. 2004 Aug 6;279(32):33899-908. Epub 2004 May 21. [15155769 ]
General Function:
Carnitine o-palmitoyltransferase activity
Specific Function:
Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Plays an important role in triglyceride metabolism.
Gene Name:
CPT1A
Uniprot ID:
P50416
Molecular Weight:
88366.92 Da
References
  1. Shin ES, Cho SY, Lee EH, Lee SJ, Chang IS, Lee TR: Positive regulation of hepatic carnitine palmitoyl transferase 1A (CPT1A) activities by soy isoflavones and L-carnitine. Eur J Nutr. 2006 Mar;45(3):159-64. Epub 2005 Dec 20. [16362726 ]
General Function:
Carnitine o-palmitoyltransferase activity
Gene Name:
CPT2
Uniprot ID:
P23786
Molecular Weight:
73776.335 Da
References
  1. Lehtihet M, Welsh N, Berggren PO, Cook GA, Sjoholm A: Glibenclamide inhibits islet carnitine palmitoyltransferase 1 activity, leading to PKC-dependent insulin exocytosis. Am J Physiol Endocrinol Metab. 2003 Aug;285(2):E438-46. Epub 2003 Apr 8. [12684219 ]
General Function:
Symporter activity
Specific Function:
Sodium-ion dependent, low affinity carnitine transporter. Probably transports one sodium ion with one molecule of carnitine. Also transports organic cations such as tetraethylammonium (TEA) without the involvement of sodium. Relative uptake activity ratio of carnitine to TEA is 1.78. A key substrate of this transporter seems to be ergothioneine (ET).
Gene Name:
SLC22A4
Uniprot ID:
Q9H015
Molecular Weight:
62154.48 Da
References
  1. Lash LH, Putt DA, Cai H: Membrane transport function in primary cultures of human proximal tubular cells. Toxicology. 2006 Dec 7;228(2-3):200-18. Epub 2006 Sep 1. [16997449 ]
Specific Function:
Mediates the transport of acylcarnitines of different length across the mitochondrial inner membrane from the cytosol to the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway.
Gene Name:
SLC25A20
Uniprot ID:
O43772
Molecular Weight:
32943.46 Da
References
  1. Tonazzi A, Giangregorio N, Indiveri C, Palmieri F: Identification by site-directed mutagenesis and chemical modification of three vicinal cysteine residues in rat mitochondrial carnitine/acylcarnitine transporter. J Biol Chem. 2005 May 20;280(20):19607-12. Epub 2005 Mar 9. [15757911 ]
General Function:
Receptor binding
Specific Function:
Beta-oxidation of fatty acids. The highest activity concerns the C6 to C10 chain length substrate. Converts the end product of pristanic acid beta oxidation, 4,8-dimethylnonanoyl-CoA, to its corresponding carnitine ester.
Gene Name:
CROT
Uniprot ID:
Q9UKG9
Molecular Weight:
70177.935 Da
References
  1. Cordente AG, Lopez-Vinas E, Vazquez MI, Gomez-Puertas P, Asins G, Serra D, Hegardt FG: Mutagenesis of specific amino acids converts carnitine acetyltransferase into carnitine palmitoyltransferase. Biochemistry. 2006 May 16;45(19):6133-41. [16681386 ]
General Function:
Acyl carnitine transmembrane transporter activity
Specific Function:
Transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Does not transport carnitine nor acylcarnitines. Functions by both counter-exchange and uniport mechanisms.
Gene Name:
SLC25A29
Uniprot ID:
Q8N8R3
Molecular Weight:
32061.87 Da
References
  1. Sekoguchi E, Sato N, Yasui A, Fukada S, Nimura Y, Aburatani H, Ikeda K, Matsuura A: A novel mitochondrial carnitine-acylcarnitine translocase induced by partial hepatectomy and fasting. J Biol Chem. 2003 Oct 3;278(40):38796-802. Epub 2003 Jul 25. [12882971 ]
General Function:
Peroxidase activity
Specific Function:
Part of the host defense system of polymorphonuclear leukocytes. It is responsible for microbicidal activity against a wide range of organisms. In the stimulated PMN, MPO catalyzes the production of hypohalous acids, primarily hypochlorous acid in physiologic situations, and other toxic intermediates that greatly enhance PMN microbicidal activity.
Gene Name:
MPO
Uniprot ID:
P05164
Molecular Weight:
83867.71 Da
References
  1. Derin N, Agac A, Bayram Z, Asar M, Izgut-Uysal VN: Effects of L-carnitine on neutrophil-mediated ischemia-reperfusion injury in rat stomach. Cell Biochem Funct. 2006 Sep-Oct;24(5):437-42. [16130180 ]
General Function:
Organic cation transmembrane transporter activity
Specific Function:
High affinity carnitine transporter; the uptake is partially sodium-ion dependent. Thought to mediate the L-carnitine secretion mechanism from testis epididymal epithelium into the lumen which is involved in the maturation of spermatozoa. Also transports organic cations such as tetraethylammonium (TEA) and doxorubicin. The uptake of TEA is inhibited by various organic cations. The uptake of doxorubicin is sodium-independent.
Gene Name:
SLC22A16
Uniprot ID:
Q86VW1
Molecular Weight:
64613.58 Da
References
  1. Enomoto A, Wempe MF, Tsuchida H, Shin HJ, Cha SH, Anzai N, Goto A, Sakamoto A, Niwa T, Kanai Y, Anders MW, Endou H: Molecular identification of a novel carnitine transporter specific to human testis. Insights into the mechanism of carnitine recognition. J Biol Chem. 2002 Sep 27;277(39):36262-71. Epub 2002 Jun 27. [12089149 ]
General Function:
Triglyceride lipase activity
Specific Function:
Involved in the detoxification of xenobiotics and in the activation of ester and amide prodrugs. Hydrolyzes aromatic and aliphatic esters, but has no catalytic activity toward amides or a fatty acyl-CoA ester. Hydrolyzes the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form cocaethylene. Displays fatty acid ethyl ester synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
Gene Name:
CES1
Uniprot ID:
P23141
Molecular Weight:
62520.62 Da
References
  1. Bell FP: Carnitine ester hydrolysis in arteries from normal and cholesterol-fed rabbits and the effects of carnitine esters on arterial microsomal ACAT. Comp Biochem Physiol B. 1984;79(2):125-8. [6509906 ]
General Function:
Xanthine oxidase activity
Specific Function:
Key enzyme in purine degradation. Catalyzes the oxidation of hypoxanthine to xanthine. Catalyzes the oxidation of xanthine to uric acid. Contributes to the generation of reactive oxygen species. Has also low oxidase activity towards aldehydes (in vitro).
Gene Name:
XDH
Uniprot ID:
P47989
Molecular Weight:
146422.99 Da
References
  1. Di Giacomo C, Latteri F, Fichera C, Sorrenti V, Campisi A, Castorina C, Russo A, Pinturo R, Vanella A: Effect of acetyl-L-carnitine on lipid peroxidation and xanthine oxidase activity in rat skeletal muscle. Neurochem Res. 1993 Nov;18(11):1157-62. [8255367 ]

From T3DB