General Information

MaintermBIS(2-CHLOROETHYL) ETHER
CAS Reg.No.(or other ID)111-44-4
Regnum 176.170

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID8115
IUPAC Name1-chloro-2-(2-chloroethoxy)ethane
InChIInChI=1S/C4H8Cl2O/c5-1-3-7-4-2-6/h1-4H2
InChI KeyZNSMNVMLTJELDZ-UHFFFAOYSA-N
Canonical SMILESC(CCl)OCCCl
Molecular FormulaC4H8Cl2O
Wikipediabis(2-chloroethyl)ether

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight143.007
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count1
Rotatable Bond Count4
Complexity28.9
CACTVS Substructure Key Fingerprint A A A D c c B g I A A G A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G g I A A A A A A A O g g E I A A A A A B A A A A A A A A A A A A A A A A A A A A A A A A Q A A A A A A A A A C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area9.2
Monoisotopic Mass141.995
Exact Mass141.995
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count7
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9805
Human Intestinal AbsorptionHIA+0.9942
Caco-2 PermeabilityCaco2+0.6351
P-glycoprotein SubstrateNon-substrate0.7832
P-glycoprotein InhibitorNon-inhibitor0.8894
Non-inhibitor0.8697
Renal Organic Cation TransporterNon-inhibitor0.7550
Distribution
Subcellular localizationMitochondria0.6584
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8442
CYP450 2D6 SubstrateNon-substrate0.8747
CYP450 3A4 SubstrateNon-substrate0.7124
CYP450 1A2 InhibitorNon-inhibitor0.6831
CYP450 2C9 InhibitorNon-inhibitor0.8392
CYP450 2D6 InhibitorNon-inhibitor0.9506
CYP450 2C19 InhibitorNon-inhibitor0.7085
CYP450 3A4 InhibitorNon-inhibitor0.9686
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.8123
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionStrong inhibitor0.5165
Non-inhibitor0.8922
AMES ToxicityAMES toxic0.9282
CarcinogensCarcinogens 0.6765
Fish ToxicityHigh FHMT0.5690
Tetrahymena Pyriformis ToxicityHigh TPT0.8576
Honey Bee ToxicityHigh HBT0.7694
BiodegradationNot ready biodegradable0.7987
Acute Oral ToxicityII0.7178
Carcinogenicity (Three-class)Danger0.4926

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-1.1825LogS
Caco-2 Permeability1.3017LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity3.2487LD50, mol/kg
Fish Toxicity1.7101pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.1423pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of ToxicityBCEE is extremely meabolized, with thiodiglycolic acid (TDGA) being the principal endproduct. The pathway leading to TDGA formation is uncertain, but probably involves oxidative cleavage of the ether bond to yield chloroacetaldehyde and 2-chloroethanol.
MetabolismBCEE is absorbed following inhalation exposure, oral administration, as well as contact to the skin. BCEE is distributed through the body, but highest levels are found in the liver, kidney and small intestine, while much lower levels are found in lung, spleen and muscle. BCEE is extensively metabolized to thiodiglycolic acid (TDGA), 2-chloroethoxyacetic acid (CEAA), and N-acetyl-S-[2-(2-chloroethoxy)ethyl]-L-cysteine, with TDGA being the principal endproduct. Smaller amounts of BCEE are metabolized by oxidation or substitution at a chlorine without ether cleavage. Approximately 80% of BCEE administered orally is excreted as TDGA within 48 hours. Smaller amounts are excreted in feces or expired air and only a very small fraction of the dose remains in the body. This indicates that BCEE is effectively excreted, and that it has a low tendency to accumulate in tissues.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)3, not classifiable as to its carcinogenicity to humans.
Minimum Risk LevelIntermediate Inhalation: 0.02 ppm
Health EffectsThe principal acute effect of inhalation exposure to BCEE vapor is irritation and injury to the cells of the respiratory epithelium. BCEE vapors can cause loss of weight, nose irritation, severe injury to the lungs, and may lead to death. It might also cause cancer. (L183)
TreatmentNone
Reference
  1. Lingg RD, Kaylor WH, Pyle SM, Domino MM, Smith CC, Wolfe GF: Metabolism of bis(2-chloroethyl)ether and bis(2-chloroisopropyl)ether in the rat. Arch Environ Contam Toxicol. 1982;11(2):173-83.[6807217 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic oxygen compounds
ClassOrganooxygen compounds
SubclassEthers
Intermediate Tree NodesNot available
Direct ParentDialkyl ethers
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsDialkyl ether - Hydrocarbon derivative - Organochloride - Organohalogen compound - Alkyl halide - Alkyl chloride - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as dialkyl ethers. These are organic compounds containing the dialkyl ether functional group, with the formula ROR', where R and R' are alkyl groups.

From ClassyFire


Targets

General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Luft S, Milki E, Glustrom E, Ampiah-Bonney R, O'Hara P. Binding of Organochloride and Pyrethroid Pesticides To Estrogen Receptors α and β: A Fluorescence Polarization Assay. Biophysical Journal 2009;96(3):444a. [16531984 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
Gene Name:
ESR2
Uniprot ID:
Q92731
Molecular Weight:
59215.765 Da
References
  1. Luft S, Milki E, Glustrom E, Ampiah-Bonney R, O'Hara P. Binding of Organochloride and Pyrethroid Pesticides To Estrogen Receptors α and β: A Fluorescence Polarization Assay. Biophysical Journal 2009;96(3):444a. [16531984 ]
General Function:
Signal transducer activity
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of the calcium.
Gene Name:
ATP2C1
Uniprot ID:
P98194
Molecular Weight:
100576.42 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium.
Gene Name:
ATP2C2
Uniprot ID:
O75185
Molecular Weight:
103186.475 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA2
Uniprot ID:
P47869
Molecular Weight:
51325.85 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA3
Uniprot ID:
P34903
Molecular Weight:
55164.055 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA4
Uniprot ID:
P48169
Molecular Weight:
61622.645 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA5
Uniprot ID:
P31644
Molecular Weight:
52145.645 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRA6
Uniprot ID:
Q16445
Molecular Weight:
51023.69 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRB1
Uniprot ID:
P18505
Molecular Weight:
54234.085 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB2
Uniprot ID:
P47870
Molecular Weight:
59149.895 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRD
Uniprot ID:
O14764
Molecular Weight:
50707.835 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRE
Uniprot ID:
P78334
Molecular Weight:
57971.175 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG1
Uniprot ID:
Q8N1C3
Molecular Weight:
53594.49 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRG3
Uniprot ID:
Q99928
Molecular Weight:
54288.16 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. In the uterus, the function of the receptor appears to be related to tissue contractility. The binding of this pI subunit with other GABA(A) receptor subunits alters the sensitivity of recombinant receptors to modulatory agents such as pregnanolone.
Gene Name:
GABRP
Uniprot ID:
O00591
Molecular Weight:
50639.735 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-1 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR1
Uniprot ID:
P24046
Molecular Weight:
55882.91 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. Rho-2 GABA receptor could play a role in retinal neurotransmission.
Gene Name:
GABRR2
Uniprot ID:
P28476
Molecular Weight:
54150.41 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Gaba-a receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRR3
Uniprot ID:
A8MPY1
Molecular Weight:
54271.1 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transmembrane signaling receptor activity
Specific Function:
GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel.
Gene Name:
GABRQ
Uniprot ID:
Q9UN88
Molecular Weight:
72020.875 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B1
Uniprot ID:
P20020
Molecular Weight:
138754.045 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein c-terminus binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B2
Uniprot ID:
Q01814
Molecular Weight:
136875.18 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Pdz domain binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell.
Gene Name:
ATP2B3
Uniprot ID:
Q16720
Molecular Weight:
134196.025 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Scaffold protein binding
Specific Function:
Calcium/calmodulin-regulated and magnesium-dependent enzyme that catalyzes the hydrolysis of ATP coupled with the transport of calcium out of the cell (PubMed:8530416). By regulating sperm cell calcium homeostasis, may play a role in sperm motility (By similarity).
Gene Name:
ATP2B4
Uniprot ID:
P23634
Molecular Weight:
137919.03 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Protein homodimerization activity
Specific Function:
Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A1
Uniprot ID:
O14983
Molecular Weight:
110251.36 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
S100 protein binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle.
Gene Name:
ATP2A2
Uniprot ID:
P16615
Molecular Weight:
114755.765 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Metal ion binding
Specific Function:
This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction.
Gene Name:
ATP2A3
Uniprot ID:
Q93084
Molecular Weight:
113976.23 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
P05023
Molecular Weight:
112895.01 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A2
Uniprot ID:
P50993
Molecular Weight:
112264.385 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A3
Uniprot ID:
P13637
Molecular Weight:
111747.51 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients. Plays a role in sperm motility.
Gene Name:
ATP1A4
Uniprot ID:
Q13733
Molecular Weight:
114165.44 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The beta subunit regulates, through assembly of alpha/beta heterodimers, the number of sodium pumps transported to the plasma membrane.Involved in cell adhesion and establishing epithelial cell polarity.
Gene Name:
ATP1B1
Uniprot ID:
P05026
Molecular Weight:
35061.07 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-2 subunit is not known.Mediates cell adhesion of neurons and astrocytes, and promotes neurite outgrowth.
Gene Name:
ATP1B2
Uniprot ID:
P14415
Molecular Weight:
33366.925 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Sodium:potassium-exchanging atpase activity
Specific Function:
This is the non-catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of Na(+) and K(+) ions across the plasma membrane. The exact function of the beta-3 subunit is not known.
Gene Name:
ATP1B3
Uniprot ID:
P54709
Molecular Weight:
31512.34 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.
General Function:
Transporter activity
Specific Function:
May be involved in forming the receptor site for cardiac glycoside binding or may modulate the transport function of the sodium ATPase.
Gene Name:
FXYD2
Uniprot ID:
P54710
Molecular Weight:
7283.265 Da
References
  1. Casarett LJ, Klaassen CD, and Watkins JB (2003). Casarett and Doull's essentials of toxicology. New York: McGraw-Hill/Medical Pub. Div.

From T3DB