DICYCLOHEXYL PHTHALATE
General Information
Mainterm | DICYCLOHEXYL PHTHALATE |
CAS Reg.No.(or other ID) | 84-61-7 |
Regnum |
175.105 176.170 177.1200 178.3740 |
From www.fda.gov
Computed Descriptors
Download SDF2D Structure | |
CID | 6777 |
IUPAC Name | dicyclohexyl benzene-1,2-dicarboxylate |
InChI | InChI=1S/C20H26O4/c21-19(23-15-9-3-1-4-10-15)17-13-7-8-14-18(17)20(22)24-16-11-5-2-6-12-16/h7-8,13-16H,1-6,9-12H2 |
InChI Key | VOWAEIGWURALJQ-UHFFFAOYSA-N |
Canonical SMILES | C1CCC(CC1)OC(=O)C2=CC=CC=C2C(=O)OC3CCCCC3 |
Molecular Formula | C20H26O4 |
Wikipedia | dicyclohexyl phthalate |
From Pubchem
Computed Properties
Property Name | Property Value |
---|---|
Molecular Weight | 330.424 |
Hydrogen Bond Donor Count | 0 |
Hydrogen Bond Acceptor Count | 4 |
Rotatable Bond Count | 6 |
Complexity | 381.0 |
CACTVS Substructure Key Fingerprint | A A A D c e B 4 O A A A A A A A A A A A A A A A A A A A A A A A A A A w Y M A A A A A A A A A B A A A A G g A A A A A A D B S g m A I w C I A A B A C I A i D S C A A C A A A k A A A I i A E A C M g I J j K A N R i C M Q A k w A E I q Y f L y K C O g A A A A A A Q A A A A A A A A A C A A A A A A A A A A A A = = |
Topological Polar Surface Area | 52.6 |
Monoisotopic Mass | 330.183 |
Exact Mass | 330.183 |
Compound Is Canonicalized | True |
Formal Charge | 0 |
Heavy Atom Count | 24 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
From Pubchem
ADMET Predicted Profile --- Classification
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9437 |
Human Intestinal Absorption | HIA+ | 0.9724 |
Caco-2 Permeability | Caco2+ | 0.6445 |
P-glycoprotein Substrate | Non-substrate | 0.6770 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.5477 |
Non-inhibitor | 0.8617 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.7859 |
Distribution | ||
Subcellular localization | Mitochondria | 0.9520 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.8030 |
CYP450 2D6 Substrate | Non-substrate | 0.9047 |
CYP450 3A4 Substrate | Non-substrate | 0.5988 |
CYP450 1A2 Inhibitor | Non-inhibitor | 0.5931 |
CYP450 2C9 Inhibitor | Inhibitor | 0.7219 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.9177 |
CYP450 2C19 Inhibitor | Inhibitor | 0.7463 |
CYP450 3A4 Inhibitor | Non-inhibitor | 0.8676 |
CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.8242 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.8426 |
Non-inhibitor | 0.8341 | |
AMES Toxicity | Non AMES toxic | 0.9294 |
Carcinogens | Non-carcinogens | 0.9274 |
Fish Toxicity | High FHMT | 0.9796 |
Tetrahymena Pyriformis Toxicity | High TPT | 0.9622 |
Honey Bee Toxicity | High HBT | 0.6682 |
Biodegradation | Ready biodegradable | 0.7562 |
Acute Oral Toxicity | IV | 0.7068 |
Carcinogenicity (Three-class) | Non-required | 0.6664 |
From admetSAR
ADMET Predicted Profile --- Regression
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -4.0929 | LogS |
Caco-2 Permeability | 0.7595 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 1.0135 | LD50, mol/kg |
Fish Toxicity | -0.4007 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | 0.7002 | pIGC50, ug/L |
From admetSAR
Toxicity Profile
Route of Exposure | Oral ; inhalation ; dermal |
---|---|
Mechanism of Toxicity | Phthalate esters are endocrine disruptors. They decrease foetal testis testosterone production and reduce the expression of steroidogenic genes by decreasing mRNA expression. Some phthalates have also been shown to reduce the expression of insulin-like peptide 3 (insl3), an important hormone secreted by the Leydig cell necessary for development of the gubernacular ligament. Animal studies have shown that these effects disrupt reproductive development and can cause a number of malformations in affected young. |
Metabolism | Phthalate esters are first hydrolyzed to their monoester derivative. Once formed, the monoester derivative can be further hydrolyzed in vivo to phthalic acid or conjugated to glucuronide, both of which can then be excreted. The terminal or next-to-last carbon atom in the monoester can also be oxidized to an alcohol, which can be excreted as is or first oxidized to an aldehyde, ketone, or carboxylic acid. The monoester and oxidative metabolites are excreted in the urine and faeces. |
Toxicity Values | LD50: >3200 mg/kg (Oral, Mouse) LD50: 1600 mg/kg (Intraperitoneal, Mouse) |
Lethal Dose | |
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
Minimum Risk Level | |
Health Effects | Phthalate esters are endocrine disruptors. Animal studies have shown that they disrupt reproductive development and can cause a number of malformations in affected young, such as reduced anogenital distance (AGD), cryptorchidism, hypospadias, and reduced fertility. The combination of effects associated with phthalates is called 'phthalate syndrome’. (A2883) |
Treatment | |
Reference |
|
From T3DB
Taxonomic Classification
Kingdom | Organic compounds |
---|---|
Superclass | Benzenoids |
Class | Benzene and substituted derivatives |
Subclass | Benzoic acids and derivatives |
Intermediate Tree Nodes | Not available |
Direct Parent | Benzoic acid esters |
Alternative Parents | |
Molecular Framework | Aromatic homomonocyclic compounds |
Substituents | Benzoate ester - Benzoyl - Dicarboxylic acid or derivatives - Carboxylic acid ester - Carboxylic acid derivative - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Aromatic homomonocyclic compound |
Description | This compound belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. |
From ClassyFire
Targets
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
- Gene Name:
- ESR1
- Uniprot ID:
- P03372
- Molecular Weight:
- 66215.45 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
- Gene Name:
- ESR2
- Uniprot ID:
- Q92731
- Molecular Weight:
- 59215.765 Da
References
- Takeuchi S, Iida M, Kobayashi S, Jin K, Matsuda T, Kojima H: Differential effects of phthalate esters on transcriptional activities via human estrogen receptors alpha and beta, and androgen receptor. Toxicology. 2005 Jun 1;210(2-3):223-33. [15840436 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
- Gene Name:
- NR1I2
- Uniprot ID:
- O75469
- Molecular Weight:
- 49761.245 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Transcription factor that mediates the action of vitamin D3 by controlling the expression of hormone sensitive genes. Recruited to promoters via its interaction with BAZ1B/WSTF which mediates the interaction with acetylated histones, an essential step for VDR-promoter association. Plays a central role in calcium homeostasis.
- Gene Name:
- VDR
- Uniprot ID:
- P11473
- Molecular Weight:
- 48288.64 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Cholesterol binding
- Specific Function:
- Can bind protoporphyrin IX and may play a role in the transport of porphyrins and heme (By similarity). Promotes the transport of cholesterol across mitochondrial membranes and may play a role in lipid metabolism (PubMed:24814875), but its precise physiological role is controversial. It is apparently not required for steroid hormone biosynthesis. Was initially identified as peripheral-type benzodiazepine receptor; can also bind isoquinoline carboxamides (PubMed:1847678).
- Gene Name:
- TSPO
- Uniprot ID:
- P30536
- Molecular Weight:
- 18827.81 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5 (By similarity). Specifically binds 9-cis retinoic acid (9C-RA).
- Gene Name:
- RXRB
- Uniprot ID:
- P28702
- Molecular Weight:
- 56921.38 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
From T3DB