General Information

MaintermMETHYLAMINE
CAS Reg.No.(or other ID)74-89-5
Regnum 176.170
177.1060

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID6329
IUPAC Namemethanamine
InChIInChI=1S/CH5N/c1-2/h2H2,1H3
InChI KeyBAVYZALUXZFZLV-UHFFFAOYSA-N
Canonical SMILESCN
Molecular FormulaCH5N
Wikipediamethylamine

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight31.058
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count1
Rotatable Bond Count0
Complexity2.0
CACTVS Substructure Key Fingerprint A A A D c Y A C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A F A A Q A A A A A A A A A A Q C A A B A A A A A A A A A A A A A A A A A A A A A A I A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area26.0
Monoisotopic Mass31.042
Exact Mass31.042
XLogP3None
XLogP3-AA-0.7
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count2
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9394
Human Intestinal AbsorptionHIA+0.9759
Caco-2 PermeabilityCaco2+0.6811
P-glycoprotein SubstrateNon-substrate0.8684
P-glycoprotein InhibitorNon-inhibitor0.9875
Non-inhibitor0.9877
Renal Organic Cation TransporterNon-inhibitor0.8865
Distribution
Subcellular localizationLysosome0.9055
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8546
CYP450 2D6 SubstrateNon-substrate0.7879
CYP450 3A4 SubstrateNon-substrate0.8005
CYP450 1A2 InhibitorNon-inhibitor0.9568
CYP450 2C9 InhibitorNon-inhibitor0.9616
CYP450 2D6 InhibitorNon-inhibitor0.9538
CYP450 2C19 InhibitorNon-inhibitor0.9736
CYP450 3A4 InhibitorNon-inhibitor0.9643
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9433
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9495
Non-inhibitor0.9672
AMES ToxicityNon AMES toxic0.9444
CarcinogensCarcinogens 0.5549
Fish ToxicityLow FHMT0.8893
Tetrahymena Pyriformis ToxicityLow TPT0.9375
Honey Bee ToxicityHigh HBT0.6817
BiodegradationReady biodegradable0.7561
Acute Oral ToxicityII0.7363
Carcinogenicity (Three-class)Non-required0.6441

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility1.3265LogS
Caco-2 Permeability1.3089LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.3442LD50, mol/kg
Fish Toxicity3.3692pLC50, mg/L
Tetrahymena Pyriformis Toxicity-1.7143pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureEndogenous, Ingestion, Dermal (contact)
Mechanism of ToxicityUremic toxins such as methylamine are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) . Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species
MetabolismUremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsChronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
TreatmentKidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored.
Reference
  1. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012 Jul;23(7):1258-70. doi: 10.1681/ASN.2011121175. Epub 2012 May 24.[22626821 ]
  2. Pirisino R, Ghelardini C, De Siena G, Malmberg P, Galeotti N, Cioni L, Banchelli G, Raimondi L: Methylamine: a new endogenous modulator of neuron firing? Med Sci Monit. 2005 Aug;11(8):RA257-61. Epub 2005 Jul 25.[16049393 ]
  3. Yu PH, Wright S, Fan EH, Lun ZR, Gubisne-Harberle D: Physiological and pathological implications of semicarbazide-sensitive amine oxidase. Biochim Biophys Acta. 2003 Apr 11;1647(1-2):193-9.[12686132 ]
  4. McDonald A, Tipton K, O'Sullivan J, Olivieri A, Davey G, Coonan AM, Fu W: Modelling the roles of MAO and SSAO in glucose transport. J Neural Transm. 2007;114(6):783-6. Epub 2007 Apr 5.[17406961 ]
  5. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7.[12097436 ]
  6. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297.[25041433 ]
  7. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461.[22419041 ]
  8. Nicholson JK, Foxall PJ, Spraul M, Farrant RD, Lindon JC: 750 MHz 1H and 1H-13C NMR spectroscopy of human blood plasma. Anal Chem. 1995 Mar 1;67(5):793-811.[7762816 ]
  9. Wolfe CL, Warrington JA, Davis S, Green S, Norcum MT: Isolation and characterization of human nuclear and cytosolic multisynthetase complexes and the intracellular distribution of p43/EMAPII. Protein Sci. 2003 Oct;12(10):2282-90.[14500886 ]
  10. Wolkers WF, Looper SA, Fontanilla RA, Tsvetkova NM, Tablin F, Crowe JH: Temperature dependence of fluid phase endocytosis coincides with membrane properties of pig platelets. Biochim Biophys Acta. 2003 Jun 10;1612(2):154-63.[12787933 ]
  11. Stanic P, Tandara M, Sonicki Z, Simunic V, Radakovic B, Suchanek E: Comparison of protective media and freezing techniques for cryopreservation of human semen. Eur J Obstet Gynecol Reprod Biol. 2000 Jul;91(1):65-70.[10817881 ]
  12. Zeisel SH, Gettner S, Youssef M: Formation of aliphatic amine precursors of N-nitrosodimethylamine after oral administration of choline and choline analogues in the rat. Food Chem Toxicol. 1989 Jan;27(1):31-4.[2703191 ]
  13. O'Sullivan J, Unzeta M, Healy J, O'Sullivan MI, Davey G, Tipton KF: Semicarbazide-sensitive amine oxidases: enzymes with quite a lot to do. Neurotoxicology. 2004 Jan;25(1-2):303-15.[14697905 ]
  14. Sawetawan C, Bruns ES, Prins GS: Improvement of post-thaw sperm motility in poor quality human semen. Fertil Steril. 1993 Oct;60(4):706-10.[8405530 ]
  15. Gunnarsson M, Sundstrom P, Stigbrand T, Jensen PE: Native and transformed alpha2-macroglobulin in plasma from patients with multiple sclerosis. Acta Neurol Scand. 2003 Jul;108(1):16-21.[12807388 ]
  16. Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T: Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W. J Biomed Mater Res. 1990 Jun;24(6):721-34.[2361964 ]
  17. Mashige F, Imai K, Osuga T: A simple and sensitive assay of total serum bile acids. Clin Chim Acta. 1976 Jul 1;70(1):79-86.[947625 ]
  18. Wosikowski K, Biedermann E, Rattel B, Breiter N, Jank P, Loser R, Jansen G, Peters GJ: In vitro and in vivo antitumor activity of methotrexate conjugated to human serum albumin in human cancer cells. Clin Cancer Res. 2003 May;9(5):1917-26.[12738750 ]
  19. Tencer J, Thysell H, Andersson K, Grubb A: Long-term stability of albumin, protein HC, immunoglobulin G, kappa- and lambda-chain-immunoreactivity, orosomucoid and alpha 1-antitrypsin in urine stored at -20 degrees C. Scand J Urol Nephrol. 1997 Feb;31(1):67-71.[9060087 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic nitrogen compounds
ClassOrganonitrogen compounds
SubclassAmines
Intermediate Tree NodesPrimary amines
Direct ParentMonoalkylamines
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsOrganopnictogen compound - Hydrocarbon derivative - Primary aliphatic amine - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as monoalkylamines. These are organic compounds containing an primary aliphatic amine group.

From ClassyFire


Targets

General Function:
Vitamin d binding
Specific Function:
May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity).The Klotho peptide generated by cleavage of the membrane-bound isoform may be an anti-aging circulating hormone which would extend life span by inhibiting insulin/IGF1 signaling.
Gene Name:
KL
Uniprot ID:
Q9UEF7
Molecular Weight:
116179.815 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Superoxide-generating nadph oxidase activity
Specific Function:
Constitutive NADPH oxidase which generates superoxide intracellularly upon formation of a complex with CYBA/p22phox. Regulates signaling cascades probably through phosphatases inhibition. May function as an oxygen sensor regulating the KCNK3/TASK-1 potassium channel and HIF1A activity. May regulate insulin signaling cascade. May play a role in apoptosis, bone resorption and lipolysaccharide-mediated activation of NFKB. May produce superoxide in the nucleus and play a role in regulating gene expression upon cell stimulation. Isoform 3 is not functional. Isoform 5 and isoform 6 display reduced activity.Isoform 4: Involved in redox signaling in vascular cells. Constitutively and NADPH-dependently generates reactive oxygen species (ROS). Modulates the nuclear activation of ERK1/2 and the ELK1 transcription factor, and is capable of inducing nuclear DNA damage. Displays an increased activity relative to isoform 1.
Gene Name:
NOX4
Uniprot ID:
Q9NPH5
Molecular Weight:
66930.995 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Plays an important role in the excretion/detoxification of endogenous and exogenous organic anions, especially from the brain and kidney. Involved in the transport basolateral of steviol, fexofenadine. Transports benzylpenicillin (PCG), estrone-3-sulfate (E1S), cimetidine (CMD), 2,4-dichloro-phenoxyacetate (2,4-D), p-amino-hippurate (PAH), acyclovir (ACV) and ochratoxin (OTA).
Gene Name:
SLC22A8
Uniprot ID:
Q8TCC7
Molecular Weight:
59855.585 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Uniporter activity
Specific Function:
Involved in the uptake of ammonia.
Gene Name:
amtB
Uniprot ID:
P69681
Molecular Weight:
44514.335 Da

From T3DB