NONYLPHENOL, P-
General Information
Mainterm | NONYLPHENOL, P- |
CAS Reg.No.(or other ID) | 104-40-5 |
Regnum |
175.300 178.2010 |
From www.fda.gov
Computed Descriptors
Download SDF2D Structure | |
CID | 1752 |
IUPAC Name | 4-nonylphenol |
InChI | InChI=1S/C15H24O/c1-2-3-4-5-6-7-8-9-14-10-12-15(16)13-11-14/h10-13,16H,2-9H2,1H3 |
InChI Key | IGFHQQFPSIBGKE-UHFFFAOYSA-N |
Canonical SMILES | CCCCCCCCCC1=CC=C(C=C1)O |
Molecular Formula | C15H24O |
Wikipedia | 4-nonylphenol |
From Pubchem
Computed Properties
Property Name | Property Value |
---|---|
Molecular Weight | 220.356 |
Hydrogen Bond Donor Count | 1 |
Hydrogen Bond Acceptor Count | 1 |
Rotatable Bond Count | 8 |
Complexity | 148.0 |
CACTVS Substructure Key Fingerprint | A A A D c e B w I A A A A A A A A A A A A A A A A A A A A A A A A A A w A A A A A A A A A A A B A A A A G g A A C A A A D A S A m A A y B o A A A g C A A i B C A A A C A A A g I A A I i A A G C I g I J i K C E R K A c A A k w B E I m A e A w O A O I A A A A A A A A A B A A A A A A A A A A A A A A A A A A A = = |
Topological Polar Surface Area | 20.2 |
Monoisotopic Mass | 220.183 |
Exact Mass | 220.183 |
Compound Is Canonicalized | True |
Formal Charge | 0 |
Heavy Atom Count | 16 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
From Pubchem
ADMET Predicted Profile --- Classification
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9160 |
Human Intestinal Absorption | HIA+ | 0.9974 |
Caco-2 Permeability | Caco2+ | 0.8689 |
P-glycoprotein Substrate | Non-substrate | 0.5544 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.9560 |
Non-inhibitor | 0.9000 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.8177 |
Distribution | ||
Subcellular localization | Mitochondria | 0.6118 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.7566 |
CYP450 2D6 Substrate | Non-substrate | 0.8040 |
CYP450 3A4 Substrate | Non-substrate | 0.6319 |
CYP450 1A2 Inhibitor | Inhibitor | 0.6205 |
CYP450 2C9 Inhibitor | Non-inhibitor | 0.8374 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.8981 |
CYP450 2C19 Inhibitor | Non-inhibitor | 0.7490 |
CYP450 3A4 Inhibitor | Non-inhibitor | 0.8309 |
CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.6925 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.5413 |
Non-inhibitor | 0.7265 | |
AMES Toxicity | Non AMES toxic | 0.9637 |
Carcinogens | Non-carcinogens | 0.7809 |
Fish Toxicity | High FHMT | 0.9787 |
Tetrahymena Pyriformis Toxicity | High TPT | 0.9911 |
Honey Bee Toxicity | High HBT | 0.7439 |
Biodegradation | Not ready biodegradable | 0.6972 |
Acute Oral Toxicity | III | 0.9253 |
Carcinogenicity (Three-class) | Non-required | 0.6492 |
From admetSAR
ADMET Predicted Profile --- Regression
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -2.8706 | LogS |
Caco-2 Permeability | 1.4674 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 2.1654 | LD50, mol/kg |
Fish Toxicity | -0.7285 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | 2.3448 | pIGC50, ug/L |
From admetSAR
Toxicity Profile
Route of Exposure | |
---|---|
Mechanism of Toxicity | |
Metabolism | |
Toxicity Values | |
Lethal Dose | |
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
Minimum Risk Level | |
Health Effects | |
Treatment | |
Reference |
|
From T3DB
Taxonomic Classification
Kingdom | Organic compounds |
---|---|
Superclass | Benzenoids |
Class | Phenols |
Subclass | 1-hydroxy-2-unsubstituted benzenoids |
Intermediate Tree Nodes | Not available |
Direct Parent | 1-hydroxy-2-unsubstituted benzenoids |
Alternative Parents | |
Molecular Framework | Aromatic homomonocyclic compounds |
Substituents | 1-hydroxy-2-unsubstituted benzenoid - Monocyclic benzene moiety - Organic oxygen compound - Hydrocarbon derivative - Organooxygen compound - Aromatic homomonocyclic compound |
Description | This compound belongs to the class of organic compounds known as 1-hydroxy-2-unsubstituted benzenoids. These are phenols that a unsubstituted at the 2-position. |
From ClassyFire
Targets
- General Function:
- Steroid hormone binding
- Specific Function:
- G-protein coupled estrogen receptor that binds to 17-beta-estradiol (E2) with high affinity, leading to rapid and transient activation of numerous intracellular signaling pathways. Stimulates cAMP production, calcium mobilization and tyrosine kinase Src inducing the release of heparin-bound epidermal growth factor (HB-EGF) and subsequent transactivation of the epidermal growth factor receptor (EGFR), activating downstream signaling pathways such as PI3K/Akt and ERK/MAPK. Mediates pleiotropic functions among others in the cardiovascular, endocrine, reproductive, immune and central nervous systems. Has a role in cardioprotection by reducing cardiac hypertrophy and perivascular fibrosis in a RAMP3-dependent manner. Regulates arterial blood pressure by stimulating vasodilation and reducing vascular smooth muscle and microvascular endothelial cell proliferation. Plays a role in blood glucose homeostasis contributing to the insulin secretion response by pancreatic beta cells. Triggers mitochondrial apoptosis during pachytene spermatocyte differentiation. Stimulates uterine epithelial cell proliferation. Enhances uterine contractility in response to oxytocin. Contributes to thymic atrophy by inducing apoptosis. Attenuates TNF-mediated endothelial expression of leukocyte adhesion molecules. Promotes neuritogenesis in developing hippocampal neurons. Plays a role in acute neuroprotection against NMDA-induced excitotoxic neuronal death. Increases firing activity and intracellular calcium oscillations in luteinizing hormone-releasing hormone (LHRH) neurons. Inhibits early osteoblast proliferation at growth plate during skeletal development. Inhibits mature adipocyte differentiation and lipid accumulation. Involved in the recruitment of beta-arrestin 2 ARRB2 at the plasma membrane in epithelial cells. Functions also as a receptor for aldosterone mediating rapid regulation of vascular contractibility through the PI3K/ERK signaling pathway. Involved in cancer progression regulation. Stimulates cancer-associated fibroblast (CAF) proliferation by a rapid genomic response through the EGFR/ERK transduction pathway. Associated with EGFR, may act as a transcription factor activating growth regulatory genes (c-fos, cyclin D1). Promotes integrin alpha-5/beta-1 and fibronectin (FN) matrix assembly in breast cancer cells.
- Gene Name:
- GPER1
- Uniprot ID:
- Q99527
- Molecular Weight:
- 42247.12 Da
References
- Thomas P, Dong J: Binding and activation of the seven-transmembrane estrogen receptor GPR30 by environmental estrogens: a potential novel mechanism of endocrine disruption. J Steroid Biochem Mol Biol. 2006 Dec;102(1-5):175-9. Epub 2006 Nov 7. [17088055 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
- Gene Name:
- ESR1
- Uniprot ID:
- P03372
- Molecular Weight:
- 66215.45 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. Binds estrogens with an affinity similar to that of ESR1, and activates expression of reporter genes containing estrogen response elements (ERE) in an estrogen-dependent manner (PubMed:20074560). Isoform beta-cx lacks ligand binding ability and has no or only very low ere binding activity resulting in the loss of ligand-dependent transactivation ability. DNA-binding by ESR1 and ESR2 is rapidly lost at 37 degrees Celsius in the absence of ligand while in the presence of 17 beta-estradiol and 4-hydroxy-tamoxifen loss in DNA-binding at elevated temperature is more gradual.
- Gene Name:
- ESR2
- Uniprot ID:
- Q92731
- Molecular Weight:
- 59215.765 Da
References
- Gutendorf B, Westendorf J: Comparison of an array of in vitro assays for the assessment of the estrogenic potential of natural and synthetic estrogens, phytoestrogens and xenoestrogens. Toxicology. 2001 Sep 14;166(1-2):79-89. [11518614 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear receptor that binds and is activated by variety of endogenous and xenobiotic compounds. Transcription factor that activates the transcription of multiple genes involved in the metabolism and secretion of potentially harmful xenobiotics, drugs and endogenous compounds. Activated by the antibiotic rifampicin and various plant metabolites, such as hyperforin, guggulipid, colupulone, and isoflavones. Response to specific ligands is species-specific. Activated by naturally occurring steroids, such as pregnenolone and progesterone. Binds to a response element in the promoters of the CYP3A4 and ABCB1/MDR1 genes.
- Gene Name:
- NR1I2
- Uniprot ID:
- O75469
- Molecular Weight:
- 49761.245 Da
References
- Dring AM, Anderson LE, Qamar S, Stoner MA: Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact. 2010 Dec 5;188(3):512-25. doi: 10.1016/j.cbi.2010.09.018. Epub 2010 Oct 20. [20869355 ]
- General Function:
- Transcription regulatory region dna binding
- Specific Function:
- Ligand-activated transcriptional activator. Binds to the XRE promoter region of genes it activates. Activates the expression of multiple phase I and II xenobiotic chemical metabolizing enzyme genes (such as the CYP1A1 gene). Mediates biochemical and toxic effects of halogenated aromatic hydrocarbons. Involved in cell-cycle regulation. Likely to play an important role in the development and maturation of many tissues. Regulates the circadian clock by inhibiting the basal and circadian expression of the core circadian component PER1. Inhibits PER1 by repressing the CLOCK-ARNTL/BMAL1 heterodimer mediated transcriptional activation of PER1.
- Gene Name:
- AHR
- Uniprot ID:
- P35869
- Molecular Weight:
- 96146.705 Da
References
- Wang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ, Li XM: Xeno-oestrogens and phyto-oestrogens are alternative ligands for the androgen receptor. Asian J Androl. 2010 Jul;12(4):535-47. doi: 10.1038/aja.2010.14. Epub 2010 May 3. [20436506 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Binds and transactivates the retinoic acid response elements that control expression of the retinoic acid receptor beta 2 and alcohol dehydrogenase 3 genes. Transactivates both the phenobarbital responsive element module of the human CYP2B6 gene and the CYP3A4 xenobiotic response element.
- Gene Name:
- NR1I3
- Uniprot ID:
- Q14994
- Molecular Weight:
- 39942.145 Da
References
- Hernandez JP, Huang W, Chapman LM, Chua S, Moore DD, Baldwin WS: The environmental estrogen, nonylphenol, activates the constitutive androstane receptor. Toxicol Sci. 2007 Aug;98(2):416-26. Epub 2007 May 5. [17483497 ]
- General Function:
- Zinc ion binding
- Specific Function:
- The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Progesterone receptor isoform B (PRB) is involved activation of c-SRC/MAPK signaling on hormone stimulation.Isoform A: inactive in stimulating c-Src/MAPK signaling on hormone stimulation.Isoform 4: Increases mitochondrial membrane potential and cellular respiration upon stimulation by progesterone.
- Gene Name:
- PGR
- Uniprot ID:
- P06401
- Molecular Weight:
- 98979.96 Da
References
- Scippo ML, Argiris C, Van De Weerdt C, Muller M, Willemsen P, Martial J, Maghuin-Rogister G: Recombinant human estrogen, androgen and progesterone receptors for detection of potential endocrine disruptors. Anal Bioanal Chem. 2004 Feb;378(3):664-9. Epub 2003 Oct 25. [14579009 ]
From T3DB