Relevant Data

Food Additives Approved by WHO:

  • GLYCINE [show]

Flavouring Substances Approved by European Union:

  • Glycine [show]

General Information

MaintermGLYCINE
Doc TypeASP
CAS Reg.No.(or other ID)56-40-6
Regnum 172.320
170.50
172.812

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID750
IUPAC Name2-aminoacetic acid
InChIInChI=1S/C2H5NO2/c3-1-2(4)5/h1,3H2,(H,4,5)
InChI KeyDHMQDGOQFOQNFH-UHFFFAOYSA-N
Canonical SMILESC(C(=O)O)N
Molecular FormulaC2H5NO2
Wikipediaglycine

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight75.067
Hydrogen Bond Donor Count2
Hydrogen Bond Acceptor Count3
Rotatable Bond Count1
Complexity42.9
CACTVS Substructure Key Fingerprint A A A D c Y B C M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A H g A Q C A A A A A D B g A Q A C A B A A g A I A A C Q C A A A A A A A A A A A A I C A A A A C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area63.3
Monoisotopic Mass75.032
Exact Mass75.032
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count5
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.5728
Human Intestinal AbsorptionHIA+0.9156
Caco-2 PermeabilityCaco2-0.7533
P-glycoprotein SubstrateNon-substrate0.7821
P-glycoprotein InhibitorNon-inhibitor0.9841
Non-inhibitor0.9794
Renal Organic Cation TransporterNon-inhibitor0.9436
Distribution
Subcellular localizationLysosome0.6944
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8833
CYP450 2D6 SubstrateNon-substrate0.8526
CYP450 3A4 SubstrateNon-substrate0.8432
CYP450 1A2 InhibitorNon-inhibitor0.9628
CYP450 2C9 InhibitorNon-inhibitor0.9738
CYP450 2D6 InhibitorNon-inhibitor0.9750
CYP450 2C19 InhibitorNon-inhibitor0.9730
CYP450 3A4 InhibitorNon-inhibitor0.9405
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9871
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9611
Non-inhibitor0.9556
AMES ToxicityNon AMES toxic0.9133
CarcinogensNon-carcinogens0.6261
Fish ToxicityLow FHMT0.8475
Tetrahymena Pyriformis ToxicityLow TPT0.9942
Honey Bee ToxicityLow HBT0.5442
BiodegradationReady biodegradable0.9289
Acute Oral ToxicityIV0.6276
Carcinogenicity (Three-class)Non-required0.5003

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility0.4676LogS
Caco-2 Permeability0.3913LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.0076LD50, mol/kg
Fish Toxicity2.9914pLC50, mg/L
Tetrahymena Pyriformis Toxicity-1.2750pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureAbsorbed from the small intestine via an active transport mechanism.
Mechanism of ToxicityIn the CNS, there exist strychnine-sensitive glycine binding sites as well as strychnine-insensitive glycine binding sites. The strychnine-insensitive glycine-binding site is located on the NMDA receptor complex. The strychnine-sensitive glycine receptor complex is comprised of a chloride channel and is a member of the ligand-gated ion channel superfamily. The putative antispastic activity of supplemental glycine could be mediated by glycine's binding to strychnine-sensitive binding sites in the spinal cord. This would result in increased chloride conductance and consequent enhancement of inhibitory neurotransmission. The ability of glycine to potentiate NMDA receptor-mediated neurotransmission raised the possibility of its use in the management of neuroleptic-resistant negative symptoms in schizophrenia. <br/>Animal studies indicate that supplemental glycine protects against endotoxin-induced lethality, hypoxia-reperfusion injury after liver transplantation, and D-galactosamine-mediated liver injury. Neutrophils are thought to participate in these pathologic processes via invasion of tissue and releasing such reactive oxygen species as superoxide. In vitro studies have shown that neutrophils contain a glycine-gated chloride channel that can attenuate increases in intracellular calcium and diminsh neutrophil oxidant production. This research is ealy-stage, but suggests that supplementary glycine may turn out to be useful in processes where neutrophil infiltration contributes to toxicity, such as ARDS.
MetabolismHepatic
Toxicity ValuesORL-RAT LD<sub>50</sub> 7930 mg/kg, SCU-RAT LD<sub>50</sub> 5200 mg/kg, IVN-RAT LD<sub>50</sub> 2600 mg/kg, ORL-MUS LD<sub>50</sub> 4920 mg/kg
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsChronically high levels of glycine are associated with at least 12 inborn errors of metabolism including: Citrullinemia Type I, Hyperglycinemia, non-ketotic, Hyperprolinemia Type I, Hyperprolinemia Type II, Iminoglycinuria, Isovaleric Aciduria, Malonic Aciduria, Methylmalonic Aciduria, Methylmalonic Aciduria Due to Cobalamin-Related Disorders, Non Ketotic Hyperglycinemeia, Prolinemia Type II, Propionic academia and Short Chain Acyl CoA Dehydrogenase Deficiency (SCAD Deficiency).
TreatmentNone
Reference
  1. Van Hove JL, Vande Kerckhove K, Hennermann JB, Mahieu V, Declercq P, Mertens S, De Becker M, Kishnani PS, Jaeken J: Benzoate treatment and the glycine index in nonketotic hyperglycinaemia. J Inherit Metab Dis. 2005;28(5):651-63.[16151895 ]
  2. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  3. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7.[12097436 ]
  4. Shoemaker JD, Elliott WH: Automated screening of urine samples for carbohydrates, organic and amino acids after treatment with urease. J Chromatogr. 1991 Jan 2;562(1-2):125-38.[2026685 ]
  5. Bales JR, Higham DP, Howe I, Nicholson JK, Sadler PJ: Use of high-resolution proton nuclear magnetic resonance spectroscopy for rapid multi-component analysis of urine. Clin Chem. 1984 Mar;30(3):426-32.[6321058 ]
  6. Collins JW, Macdermott S, Bradbrook RA, Keeley FX Jr, Timoney AG: Is using ethanol-glycine irrigating fluid monitoring and 'good surgical practice' enough to prevent harmful absorption during transurethral resection of the prostate? BJU Int. 2006 Jun;97(6):1247-51.[16686720 ]
  7. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50.[12834252 ]
  8. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6.[12297216 ]
  9. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75.[6696735 ]
  10. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.[15911239 ]
  11. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24.[14992292 ]
  12. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7.[6198473 ]
  13. Khan SA, Cox IJ, Hamilton G, Thomas HC, Taylor-Robinson SD: In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications. Liver Int. 2005 Apr;25(2):273-81.[15780050 ]
  14. Christie GR, Ford D, Howard A, Clark MA, Hirst BH: Glycine supply to human enterocytes mediated by high-affinity basolateral GLYT1. Gastroenterology. 2001 Feb;120(2):439-48.[11159884 ]
  15. Jones CM, Smith M, Henderson MJ: Reference data for cerebrospinal fluid and the utility of amino acid measurement for the diagnosis of inborn errors of metabolism. Ann Clin Biochem. 2006 Jan;43(Pt 1):63-6.[16390611 ]
  16. Bennett FI, Jackson AA: Glycine is not formed through the amino transferase reaction in human or rat placenta. Placenta. 1998 May;19(4):329-31.[9639330 ]
  17. Gomeza J, Ohno K, Hulsmann S, Armsen W, Eulenburg V, Richter DW, Laube B, Betz H: Deletion of the mouse glycine transporter 2 results in a hyperekplexia phenotype and postnatal lethality. Neuron. 2003 Nov 13;40(4):797-806.[14622583 ]
  18. Boneh A, Degani Y, Harari M: Prognostic clues and outcome of early treatment of nonketotic hyperglycinemia. Pediatr Neurol. 1996 Sep;15(2):137-41.[8888048 ]
  19. Dicke JM, Verges D, Kelley LK, Smith CH: Glycine uptake by microvillous and basal plasma membrane vesicles from term human placentae. Placenta. 1993 Jan-Feb;14(1):85-92.[8456092 ]
  20. Prescot AP, de B Frederick B, Wang L, Brown J, Jensen JE, Kaufman MJ, Renshaw PF: In vivo detection of brain glycine with echo-time-averaged (1)H magnetic resonance spectroscopy at 4.0 T. Magn Reson Med. 2006 Mar;55(3):681-6.[16453318 ]
  21. Byard RW, Harrison R, Wells R, Gilbert JD: Glycine toxicity and unexpected intra-operative death. J Forensic Sci. 2001 Sep;46(5):1244-6.[11569574 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
SubclassAmino acids, peptides, and analogues
Intermediate Tree NodesAmino acids and derivatives - Alpha amino acids and derivatives
Direct ParentAlpha amino acids
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsAlpha-amino acid - Amino acid - Carboxylic acid - Monocarboxylic acid or derivatives - Organic nitrogen compound - Organic oxide - Hydrocarbon derivative - Primary amine - Organooxygen compound - Organonitrogen compound - Organopnictogen compound - Primary aliphatic amine - Organic oxygen compound - Carbonyl group - Amine - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as alpha amino acids. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon).

From ClassyFire


Targets

General Function:
Zinc ion binding
Specific Function:
NMDA receptor subtype of glutamate-gated ion channels possesses high calcium permeability and voltage-dependent sensitivity to magnesium. Activation requires binding of agonist to both types of subunits.
Gene Name:
GRIN2A
Uniprot ID:
Q12879
Molecular Weight:
165281.215 Da
References
  1. Gabra BH, Kessler FK, Ritter JK, Dewey WL, Smith FL: Decrease in N-methyl-D-aspartic acid receptor-NR2B subunit levels by intrathecal short-hairpin RNA blocks group I metabotropic glutamate receptor-mediated hyperalgesia. J Pharmacol Exp Ther. 2007 Jul;322(1):186-94. Epub 2007 Apr 3. [17405869 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS2
Uniprot ID:
P22557
Molecular Weight:
64632.86 Da
References
  1. Munakata H, Yamagami T, Nagai T, Yamamoto M, Hayashi N: Purification and structure of rat erythroid-specific delta-aminolevulinate synthase. J Biochem. 1993 Jul;114(1):103-11. [8407861 ]
General Function:
Nmda glutamate receptor activity
Specific Function:
NMDA receptor subtype of glutamate-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Mediated by glycine.
Gene Name:
GRIN2C
Uniprot ID:
Q14957
Molecular Weight:
134207.77 Da
References
  1. Malayev A, Gibbs TT, Farb DH: Inhibition of the NMDA response by pregnenolone sulphate reveals subtype selective modulation of NMDA receptors by sulphated steroids. Br J Pharmacol. 2002 Feb;135(4):901-9. [11861317 ]
General Function:
Protein dimerization activity
Specific Function:
Catalyzes the attachment of glycine to tRNA(Gly). Is also able produce diadenosine tetraphosphate (Ap4A), a universal pleiotropic signaling molecule needed for cell regulation pathways, by direct condensation of 2 ATPs.
Gene Name:
GARS
Uniprot ID:
P41250
Molecular Weight:
83164.83 Da
References
  1. Antonellis A, Lee-Lin SQ, Wasterlain A, Leo P, Quezado M, Goldfarb LG, Myung K, Burgess S, Fischbeck KH, Green ED: Functional analyses of glycyl-tRNA synthetase mutations suggest a key role for tRNA-charging enzymes in peripheral axons. J Neurosci. 2006 Oct 11;26(41):10397-406. [17035524 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Interconversion of serine and glycine.
Uniprot ID:
Q53ET4
Molecular Weight:
55973.345 Da
References
  1. Kon K, Ikejima K, Okumura K, Aoyama T, Arai K, Takei Y, Lemasters JJ, Sato N: Role of apoptosis in acetaminophen hepatotoxicity. J Gastroenterol Hepatol. 2007 Jun;22 Suppl 1:S49-52. [17567465 ]
General Function:
Serine binding
Specific Function:
Interconversion of serine and glycine.
Gene Name:
SHMT1
Uniprot ID:
P34896
Molecular Weight:
53082.18 Da
References
  1. Gagnon D, Foucher A, Girard I, Ouellette M: Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2006 Nov;150(1):63-71. Epub 2006 Jul 13. [16876889 ]
General Function:
Neurotransmitter:sodium symporter activity
Specific Function:
Terminates the action of glycine by its high affinity sodium-dependent reuptake into presynaptic terminals. May play a role in regulation of glycine levels in NMDA receptor-mediated neurotransmission.
Gene Name:
SLC6A9
Uniprot ID:
P48067
Molecular Weight:
78259.625 Da
References
  1. Raiteri L, Stigliani S, Usai C, Diaspro A, Paluzzi S, Milanese M, Raiteri M, Bonanno G: Functional expression of release-regulating glycine transporters GLYT1 on GABAergic neurons and GLYT2 on astrocytes in mouse spinal cord. Neurochem Int. 2008 Jan;52(1-2):103-12. Epub 2007 May 16. [17597258 ]
General Function:
Very long chain acyl-coa hydrolase activity
Specific Function:
Involved in bile acid metabolism. In liver hepatocytes catalyzes the second step in the conjugation of C24 bile acids (choloneates) to glycine and taurine before excretion into bile canaliculi. The major components of bile are cholic acid and chenodeoxycholic acid. In a first step the bile acids are converted to an acyl-CoA thioester, either in peroxisomes (primary bile acids deriving from the cholesterol pathway), or cytoplasmic at the endoplasmic reticulum (secondary bile acids). May catalyze the conjugation of primary or secondary bile acids, or both. The conjugation increases the detergent properties of bile acids in the intestine, which facilitates lipid and fat-soluble vitamin absorption. In turn, bile acids are deconjugated by bacteria in the intestine and are recycled back to the liver for reconjugation (secondary bile acids). May also act as an acyl-CoA thioesterase that regulates intracellular levels of free fatty acids. In vitro, catalyzes the hydrolysis of long- and very long-chain saturated acyl-CoAs to the free fatty acid and coenzyme A (CoASH), and conjugates glycine to these acyl-CoAs.
Gene Name:
BAAT
Uniprot ID:
Q14032
Molecular Weight:
46298.865 Da
References
  1. Nakamura K, Morrison SF: Central efferent pathways mediating skin cooling-evoked sympathetic thermogenesis in brown adipose tissue. Am J Physiol Regul Integr Comp Physiol. 2007 Jan;292(1):R127-36. Epub 2006 Aug 24. [16931649 ]
General Function:
Glycine n-methyltransferase activity
Specific Function:
Catalyzes the methylation of glycine by using S-adenosylmethionine (AdoMet) to form N-methylglycine (sarcosine) with the concomitant production of S-adenosylhomocysteine (AdoHcy). Possible crucial role in the regulation of tissue concentration of AdoMet and of metabolism of methionine.
Gene Name:
GNMT
Uniprot ID:
Q14749
Molecular Weight:
32742.0 Da
References
  1. Velichkova P, Himo F: Methyl transfer in glycine N-methyltransferase. A theoretical study. J Phys Chem B. 2005 Apr 28;109(16):8216-9. [16851960 ]
General Function:
Lyase activity
Specific Function:
The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH).
Gene Name:
GLDC
Uniprot ID:
P23378
Molecular Weight:
112728.805 Da
References
  1. Engel N, van den Daele K, Kolukisaoglu U, Morgenthal K, Weckwerth W, Parnik T, Keerberg O, Bauwe H: Deletion of glycine decarboxylase in Arabidopsis is lethal under nonphotorespiratory conditions. Plant Physiol. 2007 Jul;144(3):1328-35. Epub 2007 May 11. [17496108 ]
General Function:
Transmitter-gated ion channel activity
Specific Function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
Gene Name:
GLRA2
Uniprot ID:
P23416
Molecular Weight:
52001.585 Da
References
  1. Qi Z, Stephens NR, Spalding EP: Calcium entry mediated by GLR3.3, an Arabidopsis glutamate receptor with a broad agonist profile. Plant Physiol. 2006 Nov;142(3):963-71. Epub 2006 Sep 29. [17012403 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Interconversion of serine and glycine. Associates with mitochondrial DNA.
Gene Name:
SHMT2
Uniprot ID:
P34897
Molecular Weight:
55992.385 Da
References
  1. Gagnon D, Foucher A, Girard I, Ouellette M: Stage specific gene expression and cellular localization of two isoforms of the serine hydroxymethyltransferase in the protozoan parasite Leishmania. Mol Biochem Parasitol. 2006 Nov;150(1):63-71. Epub 2006 Jul 13. [16876889 ]
General Function:
Glycine transmembrane transporter activity
Specific Function:
Involved in the uptake of GABA and glycine into the synaptic vesicles.
Gene Name:
SLC32A1
Uniprot ID:
Q9H598
Molecular Weight:
57414.58 Da
References
  1. Uchigashima M, Fukaya M, Watanabe M, Kamiya H: Evidence against GABA release from glutamatergic mossy fiber terminals in the developing hippocampus. J Neurosci. 2007 Jul 25;27(30):8088-100. [17652600 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
ALAS1
Uniprot ID:
P13196
Molecular Weight:
70580.325 Da
References
  1. He XM, Zhou J, Cheng Y, Fan J: [Purification and production of the extracellular 5-aminolevulinate from recombiniant Escherichia coli expressing yeast ALAS]. Sheng Wu Gong Cheng Xue Bao. 2007 May;23(3):520-4. [17578005 ]
General Function:
Transferase activity, transferring acyl groups
Specific Function:
Mitochondrial acyltransferase which transfers an acyl group to the N-terminus of glycine and glutamine, although much less efficiently. Can conjugate numerous substrates to form a variety of N-acylglycines, with a preference for benzoyl-CoA over phenylacetyl-CoA as acyl donors. Thereby detoxify xenobiotics, such as benzoic acid or salicylic acid, and endogenous organic acids, such as isovaleric acid.
Gene Name:
GLYAT
Uniprot ID:
Q6IB77
Molecular Weight:
33923.995 Da
References
  1. Zhou CX, Gao Y: Frequent genetic alterations and reduced expression of the Axin1 gene in oral squamous cell carcinoma: involvement in tumor progression and metastasis. Oncol Rep. 2007 Jan;17(1):73-9. [17143481 ]
General Function:
Glycine n-acyltransferase activity
Specific Function:
Acyltransferase which transfers an acyl group to the N-terminus of glutamine. Can use phenylacetyl-CoA as an acyl donor.
Gene Name:
GLYATL1
Uniprot ID:
Q969I3
Molecular Weight:
35100.895 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Glycine n-acyltransferase activity
Specific Function:
Mitochondrial acyltransferase which transfers the acyl group to the N-terminus of glycine. Conjugates numerous substrates, such as arachidonoyl-CoA and saturated medium and long-chain acyl-CoAs ranging from chain-length C8:0-CoA to C18:0-CoA, to form a variety of N-acylglycines. Shows a preference for monounsaturated fatty acid oleoyl-CoA (C18:1-CoA) as an acyl donor. Does not exhibit any activity toward C22:6-CoA and chenodeoxycholoyl-CoA, nor toward serine or alanine.
Gene Name:
GLYATL2
Uniprot ID:
Q8WU03
Molecular Weight:
34277.055 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Glycine amidinotransferase activity
Specific Function:
Catalyzes the biosynthesis of guanidinoacetate, the immediate precursor of creatine. Creatine plays a vital role in energy metabolism in muscle tissues. May play a role in embryonic and central nervous system development. May be involved in the response to heart failure by elevating local creatine synthesis.
Gene Name:
GATM
Uniprot ID:
P50440
Molecular Weight:
48455.01 Da
References
  1. Dutta U, Cohenford MA, Guha M, Dain JA: Non-enzymatic interactions of glyoxylate with lysine, arginine, and glucosamine: a study of advanced non-enzymatic glycation like compounds. Bioorg Chem. 2007 Feb;35(1):11-24. Epub 2006 Sep 12. [16970975 ]
General Function:
Transmitter-gated ion channel activity
Specific Function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
Gene Name:
GLRA1
Uniprot ID:
P23415
Molecular Weight:
52623.35 Da
References
  1. Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H: Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006 Sep 22;348(2):400-5. Epub 2006 Jul 26. [16884688 ]
General Function:
Transmitter-gated ion channel activity
Specific Function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
Gene Name:
GLRA3
Uniprot ID:
O75311
Molecular Weight:
53799.775 Da
References
  1. Majumdar S, Heinze L, Haverkamp S, Ivanova E, Wassle H: Glycine receptors of A-type ganglion cells of the mouse retina. Vis Neurosci. 2007 Jul-Aug;24(4):471-87. Epub 2007 May 29. [17550639 ]
General Function:
G-protein coupled receptor activity
Specific Function:
Receptor for N-arachidonyl glycine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase. May contribute to regulation of the immune system.
Gene Name:
GPR18
Uniprot ID:
Q14330
Molecular Weight:
38133.27 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Sarcosine oxidase activity
Specific Function:
Metabolizes sarcosine, L-pipecolic acid and L-proline.
Gene Name:
PIPOX
Uniprot ID:
Q9P0Z9
Molecular Weight:
44065.515 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Pyridoxal phosphate binding
Gene Name:
GCAT
Uniprot ID:
O75600
Molecular Weight:
45284.6 Da
References
  1. Bashir Q, Rashid N, Akhtar M: Mechanism and substrate stereochemistry of 2-amino-3-oxobutyrate CoA ligase: implications for 5-aminolevulinate synthase and related enzymes. Chem Commun (Camb). 2006 Dec 28;(48):5065-7. Epub 2006 Oct 13. [17146529 ]
General Function:
Nmda glutamate receptor activity
Specific Function:
NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine.
Gene Name:
GRIN3B
Uniprot ID:
O60391
Molecular Weight:
112990.98 Da
References
  1. Smothers CT, Woodward JJ: Pharmacological characterization of glycine-activated currents in HEK 293 cells expressing N-methyl-D-aspartate NR1 and NR3 subunits. J Pharmacol Exp Ther. 2007 Aug;322(2):739-48. Epub 2007 May 14. [17502428 ]
General Function:
Aminomethyltransferase activity
Specific Function:
The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST).
Gene Name:
GCSH
Uniprot ID:
P23434
Molecular Weight:
18884.37 Da
References
  1. Kanno J, Hutchin T, Kamada F, Narisawa A, Aoki Y, Matsubara Y, Kure S: Genomic deletion within GLDC is a major cause of non-ketotic hyperglycinaemia. J Med Genet. 2007 Mar;44(3):e69. [17361008 ]
General Function:
Glycine binding
Specific Function:
The glycine receptor is a neurotransmitter-gated ion channel. Binding of glycine to its receptor increases the chloride conductance and thus produces hyperpolarization (inhibition of neuronal firing).
Gene Name:
GLRB
Uniprot ID:
P48167
Molecular Weight:
56121.62 Da
References
  1. Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H: Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006 Sep 22;348(2):400-5. Epub 2006 Jul 26. [16884688 ]
General Function:
Neurotransmitter:sodium symporter activity
Specific Function:
Terminates the action of glycine by its high affinity sodium-dependent reuptake into presynaptic terminals. May be responsible for the termination of neurotransmission at strychnine-sensitive glycinergic synapses.
Gene Name:
SLC6A5
Uniprot ID:
Q9Y345
Molecular Weight:
87433.13 Da
References
  1. Eulenburg V, Becker K, Gomeza J, Schmitt B, Becker CM, Betz H: Mutations within the human GLYT2 (SLC6A5) gene associated with hyperekplexia. Biochem Biophys Res Commun. 2006 Sep 22;348(2):400-5. Epub 2006 Jul 26. [16884688 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
References
  1. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]
General Function:
Protein homodimerization activity
Gene Name:
GSS
Uniprot ID:
P48637
Molecular Weight:
52384.325 Da
References
  1. Janaky R, Dohovics R, Saransaari P, Oja SS: Modulation of [3H]dopamine release by glutathione in mouse striatal slices. Neurochem Res. 2007 Aug;32(8):1357-64. Epub 2007 Mar 31. [17401648 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure.
Gene Name:
AGXT2
Uniprot ID:
Q9BYV1
Molecular Weight:
57155.905 Da
References
  1. Takada Y, Mori T, Noguchi T: The effect of vitamin B6 deficiency on alanine: glyoxylate aminotransferase isoenzymes in rat liver. Arch Biochem Biophys. 1984 Feb 15;229(1):1-6. [6703688 ]
General Function:
Transaminase activity
Gene Name:
AGXT
Uniprot ID:
P21549
Molecular Weight:
43009.535 Da
References
  1. Lu TC, Ko YZ, Huang HW, Hung YC, Lin YC, Peng WH: Analgesic and anti-inflammatory activities of aqueous extract from Glycine tomentella root in mice. J Ethnopharmacol. 2007 Aug 15;113(1):142-8. Epub 2007 May 31. [17616291 ]

From T3DB