General Information

MaintermSODIUM BROMIDE
CAS Reg.No.(or other ID)7647-15-6
Regnum 178.1010

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID253881
IUPAC Namesodium;bromide
InChIInChI=1S/BrH.Na/h1H;/q;+1/p-1
InChI KeyJHJLBTNAGRQEKS-UHFFFAOYSA-M
Canonical SMILES[Na+].[Br-]
Molecular FormulaNaBr
Wikipediasodium bromide

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight102.894
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count1
Rotatable Bond Count0
Complexity2.0
CACTVS Substructure Key Fingerprint A A A D c Q A A A C A A E A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area0.0
Monoisotopic Mass101.908
Exact Mass101.908
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count2
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count2

From Pubchem


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of ToxicityBromine is a powerful oxidizing agent and is able to release oxygen free radicals from the water in mucous membranes. These free radicals are also potent oxidizers and produce tissue damage. In additon, the formation of hydrobromic and bromic acids will result in secondary irritation. The bromide ion is also known to affect the central nervous system, causing bromism. This is believed to be a result of bromide ions substituting for chloride ions in the in actions of neurotransmitters and transport systems, thus affecting numerous synaptic processes.
MetabolismBromine is mainly absorbed via inhalation, but may also enter the body through dermal contact. Bromine salts can be ingested. Due to its reactivity, bromine quickly forms bromide and may be deposited in the tissues, displacing other halogens.
Toxicity ValuesLD50: 3500 mg/kg (Oral, Rat) LD50: 2900 mg/kg (Subcutaneous, Rat) LD50: 5000 mg/kg (Intraperitoneal, Mouse)
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsBromine vapour causes irritation and direct damage to the mucous membranes. Elemental bromine also burns the skin. The bromide ion is a central nervous system depressant and chronic exposure produces neuronal effects. This is called bromism and can result in central reactions reaching from somnolence to coma, cachexia, exicosis, loss of reflexes or pathologic reflexes, clonic seizures, tremor, ataxia, loss of neural sensitivity, paresis, papillar edema of the eyes, abnormal speech, cerebral edema, delirium, aggressiveness, and psychoses. (L625, L626, L627)
TreatmentEYES: irrigate opened eyes for several minutes under running water. INGESTION: do not induce vomiting. Rinse mouth with water (never give anything by mouth to an unconscious person). Seek immediate medical advice. SKIN: should be treated immediately by rinsing the affected parts in cold running water for at least 15 minutes, followed by thorough washing with soap and water. If necessary, the person should shower and change contaminated clothing and shoes, and then must seek medical attention. INHALATION: supply fresh air. If required provide artificial respiration.
Reference
  1. Ziouzenkova O, Orasanu G, Sharlach M, Akiyama TE, Berger JP, Viereck J, Hamilton JA, Tang G, Dolnikowski GG, Vogel S, Duester G, Plutzky J: Retinaldehyde represses adipogenesis and diet-induced obesity. Nat Med. 2007 Jun;13(6):695-702. Epub 2007 May 27.[17529981 ]

From T3DB


Taxonomic Classification

KingdomInorganic compounds
SuperclassMixed metal/non-metal compounds
ClassAlkali metal salts
SubclassAlkali metal bromides
Intermediate Tree NodesNot available
Direct ParentAlkali metal bromides
Alternative Parents
Molecular FrameworkNot available
SubstituentsAlkali metal bromide - Inorganic sodium salt - Inorganic salt
DescriptionThis compound belongs to the class of inorganic compounds known as alkali metal bromides. These are inorganic compounds in which the largest halogen atom is Bromine, and the heaviest metal atom an alkali metal.

From ClassyFire


Targets

General Function:
Zinc ion binding
Specific Function:
Essential for bone resorption and osteoclast differentiation (By similarity). Reversible hydration of carbon dioxide. Can hydrate cyanamide to urea. Involved in the regulation of fluid secretion into the anterior chamber of the eye. Contributes to intracellular pH regulation in the duodenal upper villous epithelium during proton-coupled peptide absorption. Stimulates the chloride-bicarbonate exchange activity of SLC26A6.
Gene Name:
CA2
Uniprot ID:
P00918
Molecular Weight:
29245.895 Da
References
  1. Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C: Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett. 2012 Dec 1;22(23):7142-5. doi: 10.1016/j.bmcl.2012.09.065. Epub 2012 Sep 27. [23072866 ]
General Function:
Zinc ion binding
Specific Function:
Reversible hydration of carbon dioxide. Can hydrates cyanamide to urea.
Gene Name:
CA1
Uniprot ID:
P00915
Molecular Weight:
28870.0 Da
References
  1. Vullo D, De Luca V, Scozzafava A, Carginale V, Rossi M, Supuran CT, Capasso C: Anion inhibition studies of the fastest carbonic anhydrase (CA) known, the extremo-CA from the bacterium Sulfurihydrogenibium azorense. Bioorg Med Chem Lett. 2012 Dec 1;22(23):7142-5. doi: 10.1016/j.bmcl.2012.09.065. Epub 2012 Sep 27. [23072866 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport.
Gene Name:
CLCN1
Uniprot ID:
P35523
Molecular Weight:
108625.435 Da
References
  1. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKA
Uniprot ID:
P51800
Molecular Weight:
75284.08 Da
References
  1. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Voltage-gated chloride channel activity
Specific Function:
Voltage-gated chloride channel. Chloride channels have several functions including the regulation of cell volume; membrane potential stabilization, signal transduction and transepithelial transport. May be important in urinary concentrating mechanisms.
Gene Name:
CLCNKB
Uniprot ID:
P51801
Molecular Weight:
75445.3 Da
References
  1. Pusch M, Jordt SE, Stein V, Jentsch TJ: Chloride dependence of hyperpolarization-activated chloride channel gates. J Physiol. 1999 Mar 1;515 ( Pt 2):341-53. [10050002 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel (By similarity).
Gene Name:
GABRA1
Uniprot ID:
P14867
Molecular Weight:
51801.395 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Gaba-gated chloride ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRB3
Uniprot ID:
P28472
Molecular Weight:
54115.04 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]
General Function:
Inhibitory extracellular ligand-gated ion channel activity
Specific Function:
Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel.
Gene Name:
GABRG2
Uniprot ID:
P18507
Molecular Weight:
54161.78 Da
References
  1. Suzuki S, Kawakami K, Nakamura F, Nishimura S, Yagi K, Seino M: Bromide, in the therapeutic concentration, enhances GABA-activated currents in cultured neurons of rat cerebral cortex. Epilepsy Res. 1994 Oct;19(2):89-97. [7843172 ]

From T3DB