General Information

MaintermTOLUENE 2,6-DIISOCYANATE
CAS Reg.No.(or other ID)91-08-7
Regnum 175.105

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID7040
IUPAC Name1,3-diisocyanato-2-methylbenzene
InChIInChI=1S/C9H6N2O2/c1-7-8(10-5-12)3-2-4-9(7)11-6-13/h2-4H,1H3
InChI KeyRUELTTOHQODFPA-UHFFFAOYSA-N
Canonical SMILESCC1=C(C=CC=C1N=C=O)N=C=O
Molecular FormulaC9H6N2O2
Wikipediatoluene 2,6-diisocyanate

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight174.159
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count4
Rotatable Bond Count2
Complexity239.0
CACTVS Substructure Key Fingerprint A A A D c Y B z M A A A A A A A A A A A A A A A A A A A A A A A A A A w A A A A A A A A A A A B A A A A H g A A A A A A D A i B G A A y w I I A A A C o A i R C V A C C A A A g A g A I i A A A Z I g I I C K A 0 d G A I A B g g A A I y A c Q g A A O A A A A A A Q C A A A A A A A A C A Q A A A A A A A A A A A = =
Topological Polar Surface Area58.9
Monoisotopic Mass174.043
Exact Mass174.043
XLogP3None
XLogP3-AA3.9
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count13
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9867
Human Intestinal AbsorptionHIA+0.9501
Caco-2 PermeabilityCaco2+0.7056
P-glycoprotein SubstrateNon-substrate0.8545
P-glycoprotein InhibitorNon-inhibitor0.8280
Non-inhibitor0.9425
Renal Organic Cation TransporterNon-inhibitor0.8500
Distribution
Subcellular localizationMitochondria0.8449
Metabolism
CYP450 2C9 SubstrateNon-substrate0.6631
CYP450 2D6 SubstrateNon-substrate0.8701
CYP450 3A4 SubstrateNon-substrate0.6401
CYP450 1A2 InhibitorNon-inhibitor0.5501
CYP450 2C9 InhibitorNon-inhibitor0.9103
CYP450 2D6 InhibitorNon-inhibitor0.9431
CYP450 2C19 InhibitorNon-inhibitor0.7897
CYP450 3A4 InhibitorNon-inhibitor0.8309
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.7767
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9870
Non-inhibitor0.9681
AMES ToxicityAMES toxic0.9107
CarcinogensCarcinogens 0.5211
Fish ToxicityLow FHMT0.5881
Tetrahymena Pyriformis ToxicityHigh TPT0.8489
Honey Bee ToxicityLow HBT0.8683
BiodegradationNot ready biodegradable0.9547
Acute Oral ToxicityIII0.5629
Carcinogenicity (Three-class)Non-required0.6744

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-2.3718LogS
Caco-2 Permeability1.5751LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.5935LD50, mol/kg
Fish Toxicity1.5477pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.6236pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of ToxicityCyanide is an inhibitor of cytochrome c oxidase in the fourth complex of the electron transport chain (found in the membrane of the mitochondria of eukaryotic cells). It complexes with the ferric iron atom in this enzyme. The binding of cyanide to this cytochrome prevents transport of electrons from cytochrome c oxidase to oxygen. As a result, the electron transport chain is disrupted and the cell can no longer aerobically produce ATP for energy. Tissues that mainly depend on aerobic respiration, such as the central nervous system and the heart, are particularly affected. Cyanide is also known produce some of its toxic effects by binding to catalase, glutathione peroxidase, methemoglobin, hydroxocobalamin, phosphatase, tyrosinase, ascorbic acid oxidase, xanthine oxidase, succinic dehydrogenase, and Cu/Zn superoxide dismutase. Cyanide binds to the ferric ion of methemoglobin to form inactive cyanmethemoglobin.
MetabolismCyanide is rapidly alsorbed through oral, inhalation, and dermal routes and distributed throughout the body. Cyanide is mainly metabolized into thiocyanate by either rhodanese or 3-mercaptopyruvate sulfur transferase. Cyanide metabolites are excreted in the urine.
Toxicity ValuesLC50: 91 mg/m3 over 4 hours (Inhalation, Mouse)
Lethal Dose200 to 300 milligrams for an adult human (cyanide salts).
Carcinogenicity (IARC Classification)2B, possibly carcinogenic to humans.
Minimum Risk LevelNone
Health EffectsExposure to high levels of cyanide for a short time harms the brain and heart and can even cause coma, seizures, apnea, cardiac arrest and death. Chronic inhalation of cyanide causes breathing difficulties, chest pain, vomiting, blood changes, headaches, and enlargement of the thyroid gland. Skin contact with cyanide salts can irritate and produce sores. (L96, L97)
TreatmentAntidotes to cyanide poisoning include hydroxocobalamin and sodium nitrite, which release the cyanide from the cytochrome system, and rhodanase, which is an enzyme occurring naturally in mammals that combines serum cyanide with thiosulfate, producing comparatively harmless thiocyanate. Oxygen therapy can also be administered.
Reference

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassBenzenoids
ClassBenzene and substituted derivatives
SubclassToluenes
Intermediate Tree NodesNot available
Direct ParentToluene diisocyanates
Alternative Parents
Molecular FrameworkAromatic homomonocyclic compounds
SubstituentsToluene diisocyanate - Isocyanate - Organic 1,3-dipolar compound - Propargyl-type 1,3-dipolar organic compound - Organic nitrogen compound - Organic oxygen compound - Organopnictogen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Organonitrogen compound - Aromatic homomonocyclic compound
DescriptionThis compound belongs to the class of organic compounds known as toluene diisocyanates. These are organic compounds containing a benzene ring, which is substituted by a methyl group and two isocyanate groups.

From ClassyFire


Targets

General Function:
Metal ion binding
Gene Name:
ALPPL2
Uniprot ID:
P10696
Molecular Weight:
57376.515 Da
References
  1. Gerbitz KD: Human alkaline phosphatases. II. Metalloenzyme properties of the enzyme from human liver. Hoppe Seylers Z Physiol Chem. 1977 Nov;358(11):1491-7. [924371 ]
General Function:
Pyrophosphatase activity
Specific Function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular Weight:
57304.435 Da
References
  1. Gerbitz KD: Human alkaline phosphatases. II. Metalloenzyme properties of the enzyme from human liver. Hoppe Seylers Z Physiol Chem. 1977 Nov;358(11):1491-7. [924371 ]
General Function:
Receptor binding
Specific Function:
Occurs in almost all aerobically respiring organisms and serves to protect cells from the toxic effects of hydrogen peroxide. Promotes growth of cells including T-cells, B-cells, myeloid leukemia cells, melanoma cells, mastocytoma cells and normal and transformed fibroblast cells.
Gene Name:
CAT
Uniprot ID:
P04040
Molecular Weight:
59755.82 Da
References
  1. Kang YS, Lee DH, Yoon BJ, Oh DC: Purification and characterization of a catalase from photosynthetic bacterium Rhodospirillum rubrum S1 grown under anaerobic conditions. J Microbiol. 2006 Apr;44(2):185-91. [16728955 ]
General Function:
Iron ion binding
Specific Function:
Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. CO I is the catalytic subunit of the enzyme. Electrons originating in cytochrome c are transferred via the copper A center of subunit 2 and heme A of subunit 1 to the bimetallic center formed by heme A3 and copper B.
Gene Name:
MT-CO1
Uniprot ID:
P00395
Molecular Weight:
57040.91 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
Cytochrome c oxidase is the component of the respiratory chain that catalyzes the reduction of oxygen to water. Subunits 1-3 form the functional core of the enzyme complex. Subunit 2 transfers the electrons from cytochrome c via its binuclear copper A center to the bimetallic center of the catalytic subunit 1.
Gene Name:
MT-CO2
Uniprot ID:
P00403
Molecular Weight:
25564.73 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
Subunits I, II and III form the functional core of the enzyme complex.
Gene Name:
MT-CO3
Uniprot ID:
P00414
Molecular Weight:
29950.6 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX4I1
Uniprot ID:
P13073
Molecular Weight:
19576.6 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX4I2
Uniprot ID:
Q96KJ9
Molecular Weight:
20010.02 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Metal ion binding
Specific Function:
This is the heme A-containing chain of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX5A
Uniprot ID:
P20674
Molecular Weight:
16761.985 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Metal ion binding
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX5B
Uniprot ID:
P10606
Molecular Weight:
13695.57 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX6A1
Uniprot ID:
P12074
Molecular Weight:
12154.8 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX6A2
Uniprot ID:
Q02221
Molecular Weight:
10815.32 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
Connects the two COX monomers into the physiological dimeric form.
Gene Name:
COX6B1
Uniprot ID:
P14854
Molecular Weight:
10192.345 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
Connects the two COX monomers into the physiological dimeric form.
Gene Name:
COX6B2
Uniprot ID:
Q6YFQ2
Molecular Weight:
10528.905 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX6C
Uniprot ID:
P09669
Molecular Weight:
8781.36 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX7A1
Uniprot ID:
P24310
Molecular Weight:
9117.44 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX7A2
Uniprot ID:
P14406
Molecular Weight:
9395.89 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport. Plays a role in proper central nervous system (CNS) development in vertebrates.
Gene Name:
COX7B
Uniprot ID:
P24311
Molecular Weight:
9160.485 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX7B2
Uniprot ID:
Q8TF08
Molecular Weight:
9077.43 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX7C
Uniprot ID:
P15954
Molecular Weight:
7245.45 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX8A
Uniprot ID:
P10176
Molecular Weight:
7579.0 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Cytochrome-c oxidase activity
Specific Function:
This protein is one of the nuclear-coded polypeptide chains of cytochrome c oxidase, the terminal oxidase in mitochondrial electron transport.
Gene Name:
COX8C
Uniprot ID:
Q7Z4L0
Molecular Weight:
8128.575 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Glutathione peroxidase activity
Specific Function:
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. May constitute a glutathione peroxidase-like protective system against peroxide damage in sperm membrane lipids.
Gene Name:
GPX5
Uniprot ID:
O75715
Molecular Weight:
25202.14 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Zinc ion binding
Specific Function:
Protect the extracellular space from toxic effect of reactive oxygen intermediates by converting superoxide radicals into hydrogen peroxide and oxygen.
Gene Name:
SOD3
Uniprot ID:
P08294
Molecular Weight:
25850.675 Da
References
  1. Lee WG, Hwang JH, Na BK, Cho JH, Lee HW, Cho SH, Kong Y, Song CY, Kim TS: Functional expression of a recombinant copper/zinc superoxide dismutase of filarial nematode, Brugia malayi. J Parasitol. 2005 Feb;91(1):205-8. [15856906 ]
Specific Function:
Keratin-binding protein required for epithelial cell polarization. Involved in apical junction complex (AJC) assembly via its interaction with PARD3. Required for ciliogenesis.
Gene Name:
FBF1
Uniprot ID:
Q8TES7
Molecular Weight:
125445.19 Da
References
  1. Lind P, Dalene M, Lindstrom V, Grubb A, Skarping G: Albumin adducts in plasma from workers exposed to toluene diisocyanate. Analyst. 1997 Feb;122(2):151-4. [9124697 ]
General Function:
Sh3 domain binding
Specific Function:
Protects the hemoglobin in erythrocytes from oxidative breakdown.
Gene Name:
GPX1
Uniprot ID:
P07203
Molecular Weight:
22087.94 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Glutathione peroxidase activity
Specific Function:
Could play a major role in protecting mammals from the toxicity of ingested organic hydroperoxides. Tert-butyl hydroperoxide, cumene hydroperoxide and linoleic acid hydroperoxide but not phosphatidycholine hydroperoxide, can act as acceptors.
Gene Name:
GPX2
Uniprot ID:
P18283
Molecular Weight:
21953.835 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Transcription factor binding
Specific Function:
Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione.
Gene Name:
GPX3
Uniprot ID:
P22352
Molecular Weight:
25552.185 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Glutathione peroxidase activity
Gene Name:
GPX6
Uniprot ID:
P59796
Molecular Weight:
24970.46 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Peroxidase activity
Specific Function:
It protects esophageal epithelia from hydrogen peroxide-induced oxidative stress. It suppresses acidic bile acid-induced reactive oxigen species (ROS) and protects against oxidative DNA damage and double-strand breaks.
Gene Name:
GPX7
Uniprot ID:
Q96SL4
Molecular Weight:
20995.88 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Nadp binding
Specific Function:
Maintains high levels of reduced glutathione in the cytosol.
Gene Name:
GSR
Uniprot ID:
P00390
Molecular Weight:
56256.565 Da
References
  1. Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
General Function:
Phospholipid-hydroperoxide glutathione peroxidase activity
Specific Function:
Protects cells against membrane lipid peroxidation and cell death. Required for normal sperm development and male fertility. Could play a major role in protecting mammals from the toxicity of ingested lipid hydroperoxides. Essential for embryonic development. Protects from radiation and oxidative damage.
Gene Name:
GPX4
Uniprot ID:
P36969
Molecular Weight:
22174.52 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Peroxidase activity
Gene Name:
GPX8
Uniprot ID:
Q8TED1
Molecular Weight:
23880.83 Da
References
  1. Kraus RJ, Ganther HE: Reaction of cyanide with glutathione peroxidase. Biochem Biophys Res Commun. 1980 Oct 16;96(3):1116-22. [7437059 ]
General Function:
Cytochrome-c oxidase activity
Gene Name:
COX7A2P2
Uniprot ID:
O60397
Molecular Weight:
11840.715 Da
References
  1. Wikipedia. Cyanide poisoning. Last Updated 30 March 2009. : http://en.wikipedia.org/wiki/Cyanide_poisoning
General Function:
Ubiquinone binding
Specific Function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHD
Uniprot ID:
O14521
Molecular Weight:
17042.82 Da
References
  1. Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
General Function:
Succinate dehydrogenase activity
Specific Function:
Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor.
Gene Name:
SDHA
Uniprot ID:
P31040
Molecular Weight:
72690.975 Da
References
  1. Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
General Function:
Ubiquinone binding
Specific Function:
Iron-sulfur protein (IP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHB
Uniprot ID:
P21912
Molecular Weight:
31629.365 Da
References
  1. Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
General Function:
Succinate dehydrogenase activity
Specific Function:
Membrane-anchoring subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q).
Gene Name:
SDHC
Uniprot ID:
Q99643
Molecular Weight:
18610.03 Da
References
  1. Ardelt BK, Borowitz JL, Isom GE: Brain lipid peroxidation and antioxidant protectant mechanisms following acute cyanide intoxication. Toxicology. 1989 Jun 1;56(2):147-54. [2734799 ]
General Function:
Zinc ion binding
Specific Function:
Destroys radicals which are normally produced within the cells and which are toxic to biological systems.
Gene Name:
SOD1
Uniprot ID:
P00441
Molecular Weight:
15935.685 Da
References
  1. Lee WG, Hwang JH, Na BK, Cho JH, Lee HW, Cho SH, Kong Y, Song CY, Kim TS: Functional expression of a recombinant copper/zinc superoxide dismutase of filarial nematode, Brugia malayi. J Parasitol. 2005 Feb;91(1):205-8. [15856906 ]
General Function:
Protein homodimerization activity
Specific Function:
This is a copper-containing oxidase that functions in the formation of pigments such as melanins and other polyphenolic compounds. Catalyzes the rate-limiting conversions of tyrosine to DOPA, DOPA to DOPA-quinone and possibly 5,6-dihydroxyindole to indole-5,6 quinone.
Gene Name:
TYR
Uniprot ID:
P14679
Molecular Weight:
60392.69 Da
References
  1. Laufer Z, Beckett RP, Minibayeva FV: Co-occurrence of the multicopper oxidases tyrosinase and laccase in lichens in sub-order peltigerineae. Ann Bot. 2006 Nov;98(5):1035-42. Epub 2006 Sep 1. [16950829 ]

From T3DB