General Information

MaintermTRIOCTYLTIN CHLORIDE
CAS Reg.No.(or other ID)2587-76-0
Regnum

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID75757
IUPAC Namechloro(trioctyl)stannane
InChIInChI=1S/3C8H17.ClH.Sn/c3*1-3-5-7-8-6-4-2;;/h3*1,3-8H2,2H3;1H;/q;;;;+1/p-1
InChI KeyMCNGJXAXOJDJKO-UHFFFAOYSA-M
Canonical SMILESCCCCCCCC[Sn](CCCCCCCC)(CCCCCCCC)Cl
Molecular FormulaC24H51ClSn
Wikipediatrioctyltin chloride

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight493.832
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count0
Rotatable Bond Count21
Complexity226.0
CACTVS Substructure Key Fingerprint A A A D c f B 4 A A A E A A A A A A C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G A A A A A A A C A C A A A A C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A I A A A A A A A A A A A A A A A E A g I A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area0.0
Monoisotopic Mass494.27
Exact Mass494.27
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count26
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9796
Human Intestinal AbsorptionHIA+0.9414
Caco-2 PermeabilityCaco2+0.5695
P-glycoprotein SubstrateNon-substrate0.6081
P-glycoprotein InhibitorNon-inhibitor0.8768
Non-inhibitor0.6873
Renal Organic Cation TransporterNon-inhibitor0.8270
Distribution
Subcellular localizationLysosome0.5733
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8501
CYP450 2D6 SubstrateNon-substrate0.7778
CYP450 3A4 SubstrateNon-substrate0.5534
CYP450 1A2 InhibitorNon-inhibitor0.6704
CYP450 2C9 InhibitorNon-inhibitor0.8348
CYP450 2D6 InhibitorNon-inhibitor0.8826
CYP450 2C19 InhibitorNon-inhibitor0.7394
CYP450 3A4 InhibitorNon-inhibitor0.9110
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.8901
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.8425
Non-inhibitor0.5741
AMES ToxicityNon AMES toxic0.7747
CarcinogensCarcinogens 0.8365
Fish ToxicityHigh FHMT0.9648
Tetrahymena Pyriformis ToxicityHigh TPT0.9961
Honey Bee ToxicityHigh HBT0.6469
BiodegradationNot ready biodegradable0.8628
Acute Oral ToxicityIII0.5129
Carcinogenicity (Three-class)Non-required0.5656

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-3.9509LogS
Caco-2 Permeability1.0389LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.1918LD50, mol/kg
Fish Toxicity0.9379pLC50, mg/L
Tetrahymena Pyriformis Toxicity0.6195pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureOral ; inhalation ; dermal
Mechanism of ToxicityOrganotin compounds produce neurotoxic and immunotoxic effects. Organotins may directly activate glial cells contributing to neuronal cell degeneration by local release of pro-inflammatory cytokines, tumor necrosis factor-_, and/or interleukins. They may also induce apoptosis by direct action on neuronal cells. Organotin compounds stimulate the neuronal release of and/or decrease of neuronal cell uptake of neurotransmitters in brain tissue, including aspartate, GABA, glutamate, norepinephrine, and serotonin. This may be either a contributing factor to or result of the neuronal cell loss. The immunotoxic effects of organotins are characterized by thymic atrophy caused by the suppression of proliferation of immature thymocytes and apoptosis of mature thymocytes. Organotin compounds are believed to exert these effects by suppressing DNA and protein synthesis, inducing the expression of genes involved in apoptosis (such as nur77), and disrupting the regulation of intracellular calcium levels, giving rise to the uncontrolled production of reactive oxygen species, release of cytochrome c to the cytosol, and the proteolytic and nucleolytic cascade of apoptosis. The suppression of proliferation of immature thymocytes further results in the suppression of T-cell-mediated immune responses. Organotins are also endocrine disruptors and are believed to contribute to obesity by inappropriate receptor activation, leading to adipocyte differentiation. Inorganic tin triggers eryptosis, contributing to tin-induced anemia.
MetabolismThough tin metal is very poorly absorbed, tin compounds may be absorbed via oral, inhalation, or dermal routes, with organotin compounds being much more readily absorbed than inorganic tin compounds. Tin may enter the bloodstream and bind to hemoglobin, where it is distributed and accumulates mainly in the kidney, liver, lung, and bone. Organotin compounds may undergo dealkylation, hydroxylation, dearylation, and oxidation catalyzed by cytochrome P-450 enzymes in the liver. The alkyl products of dealkylation are conjugated with glutathione and further metabolized to mercapturic acid derivatives. Tin and its metabolites are excreted mainly in the urine and feces.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsBreathing or swallowing, or skin contact with organotins, can interfere with the way the brain and nervous system work, causing death in severe cases. Organic tin compounds may also damage the immune and reproductive system. (L307, L308)
TreatmentNone
Reference
  1. Nguyen TT, Foller M, Lang F: Tin triggers suicidal death of erythrocytes. J Appl Toxicol. 2009 Jan;29(1):79-83. doi: 10.1002/jat.1390.[18937211 ]
  2. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11.[16690801 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic salts
ClassOrganic metal salts
SubclassOrganic post-transition metal salts
Intermediate Tree NodesOrganic tin salts
Direct ParentTriorganotin halide salts
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsTriorganotin halide salt - Trialkyltin - Metal alkyl halide - Hydrocarbon derivative - Organotin compound - Organometallic compound - Organic post-transition metal moeity - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as triorganotin halide salts. These are organic compounds containing a tin atom bonded to three carbon atoms and a halogen atom.

From ClassyFire


Targets

General Function:
Zinc ion binding
Gene Name:
ADH1A
Uniprot ID:
P07327
Molecular Weight:
39858.37 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH1B
Uniprot ID:
P00325
Molecular Weight:
39854.21 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH1C
Uniprot ID:
P00326
Molecular Weight:
39867.27 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH4
Uniprot ID:
P08319
Molecular Weight:
40221.335 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Gene Name:
ADH6
Uniprot ID:
P28332
Molecular Weight:
39088.335 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Could function in retinol oxidation for the synthesis of retinoic acid, a hormone important for cellular differentiation. Medium-chain (octanol) and aromatic (m-nitrobenzaldehyde) compounds are the best substrates. Ethanol is not a good substrate but at the high ethanol concentrations reached in the digestive tract, it plays a role in the ethanol oxidation and contributes to the first pass ethanol metabolism.
Gene Name:
ADH7
Uniprot ID:
P40394
Molecular Weight:
41480.985 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione.
Gene Name:
ADH5
Uniprot ID:
P11766
Molecular Weight:
39723.945 Da
References
  1. Bychkov PV, Shekhovtsova TN, Milaeva ER: Inhibition of horse liver alcohol dehydrogenase by methyltin compounds. Bioinorg Chem Appl. 2005:191-9. doi: 10.1155/BCA.2005.191. [18365099 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated proinflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of ARNTL/BMAL1 in the blood vessels (By similarity).
Gene Name:
PPARG
Uniprot ID:
P37231
Molecular Weight:
57619.58 Da
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Threonine-type endopeptidase activity
Specific Function:
The proteasome is a multicatalytic proteinase complex which is characterized by its ability to cleave peptides with Arg, Phe, Tyr, Leu, and Glu adjacent to the leaving group at neutral or slightly basic pH. The proteasome has an ATP-dependent proteolytic activity. This unit is responsible of the chymotrypsin-like activity of the proteasome and is one of the principal target of the proteasome inhibitor bortezomib. May catalyze basal processing of intracellular antigens. Plays a role in the protection against oxidative damage through the Nrf2-ARE pathway (By similarity).
Gene Name:
PSMB5
Uniprot ID:
P28074
Molecular Weight:
28480.01 Da
References
  1. Shi G, Chen D, Zhai G, Chen MS, Cui QC, Zhou Q, He B, Dou QP, Jiang G: The proteasome is a molecular target of environmental toxic organotins. Environ Health Perspect. 2009 Mar;117(3):379-86. doi: 10.1289/ehp.11865. Epub 2008 Oct 23. [19337512 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, the RXR-RAR heterodimers associate with a multiprotein complex containing transcription corepressors that induce histone acetylation, chromatin condensation and transcriptional suppression. On ligand binding, the corepressors dissociate from the receptors and associate with the coactivators leading to transcriptional activation. RARA plays an essential role in the regulation of retinoic acid-induced germ cell development during spermatogenesis. Has a role in the survival of early spermatocytes at the beginning prophase of meiosis. In Sertoli cells, may promote the survival and development of early meiotic prophase spermatocytes. In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function (By similarity). Regulates expression of target genes in a ligand-dependent manner by recruiting chromatin complexes containing KMT2E/MLL5. Mediates retinoic acid-induced granulopoiesis.
Gene Name:
RARA
Uniprot ID:
P10276
Molecular Weight:
50770.805 Da
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RXR/RAR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence or presence of hormone ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. In concert with RARG, required for skeletal growth, matrix homeostasis and growth plate function.
Gene Name:
RARB
Uniprot ID:
P10826
Molecular Weight:
50488.63 Da
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]
General Function:
Zinc ion binding
Specific Function:
Receptor for retinoic acid. Retinoic acid receptors bind as heterodimers to their target response elements in response to their ligands, all-trans or 9-cis retinoic acid, and regulate gene expression in various biological processes. The RAR/RXR heterodimers bind to the retinoic acid response elements (RARE) composed of tandem 5'-AGGTCA-3' sites known as DR1-DR5. In the absence of ligand, acts mainly as an activator of gene expression due to weak binding to corepressors. Required for limb bud development. In concert with RARA or RARB, required for skeletal growth, matrix homeostasis and growth plate function (By similarity).
Gene Name:
RARG
Uniprot ID:
P13631
Molecular Weight:
50341.405 Da
References
  1. Grun F, Blumberg B: Environmental obesogens: organotins and endocrine disruption via nuclear receptor signaling. Endocrinology. 2006 Jun;147(6 Suppl):S50-5. Epub 2006 May 11. [16690801 ]

From T3DB