LAURIC ACID
Relevant Data
Food Additives Approved by WHO:
Flavouring Substances Approved by European Union:
General Information
Mainterm | LAURIC ACID |
Doc Type | ASP |
CAS Reg.No.(or other ID) | 143-07-7 |
Regnum |
173.340 172.210 172.860 |
From www.fda.gov
Computed Descriptors
Download SDF2D Structure | |
CID | 3893 |
IUPAC Name | dodecanoic acid |
InChI | InChI=1S/C12H24O2/c1-2-3-4-5-6-7-8-9-10-11-12(13)14/h2-11H2,1H3,(H,13,14) |
InChI Key | POULHZVOKOAJMA-UHFFFAOYSA-N |
Canonical SMILES | CCCCCCCCCCCC(=O)O |
Molecular Formula | C12H24O2 |
Wikipedia | lauric acid |
From Pubchem
Computed Properties
Property Name | Property Value |
---|---|
Molecular Weight | 200.322 |
Hydrogen Bond Donor Count | 1 |
Hydrogen Bond Acceptor Count | 2 |
Rotatable Bond Count | 10 |
Complexity | 132.0 |
CACTVS Substructure Key Fingerprint | A A A D c e B w M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G g A A C A A A C A C A g A A C C A A A A g A I A A C Q C A A A A A A A A A A A A A E A A A A A A B I A A A A A Q A A E A A A A A A G I y K C A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = = |
Topological Polar Surface Area | 37.3 |
Monoisotopic Mass | 200.178 |
Exact Mass | 200.178 |
Compound Is Canonicalized | True |
Formal Charge | 0 |
Heavy Atom Count | 14 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
From Pubchem
Food Additives Biosynthesis/Degradation
ADMET Predicted Profile --- Classification
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9488 |
Human Intestinal Absorption | HIA+ | 0.9888 |
Caco-2 Permeability | Caco2+ | 0.8326 |
P-glycoprotein Substrate | Non-substrate | 0.6321 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.9598 |
Non-inhibitor | 0.9277 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.9266 |
Distribution | ||
Subcellular localization | Mitochondria | 0.5152 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.7886 |
CYP450 2D6 Substrate | Non-substrate | 0.8956 |
CYP450 3A4 Substrate | Non-substrate | 0.6982 |
CYP450 1A2 Inhibitor | Inhibitor | 0.8326 |
CYP450 2C9 Inhibitor | Non-inhibitor | 0.8808 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.9554 |
CYP450 2C19 Inhibitor | Non-inhibitor | 0.9578 |
CYP450 3A4 Inhibitor | Non-inhibitor | 0.9484 |
CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.9647 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.9322 |
Non-inhibitor | 0.8868 | |
AMES Toxicity | Non AMES toxic | 0.9865 |
Carcinogens | Non-carcinogens | 0.6452 |
Fish Toxicity | High FHMT | 0.9144 |
Tetrahymena Pyriformis Toxicity | High TPT | 0.9990 |
Honey Bee Toxicity | High HBT | 0.6691 |
Biodegradation | Ready biodegradable | 0.8795 |
Acute Oral Toxicity | IV | 0.6378 |
Carcinogenicity (Three-class) | Non-required | 0.7057 |
From admetSAR
ADMET Predicted Profile --- Regression
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -3.5022 | LogS |
Caco-2 Permeability | 1.3950 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 1.3275 | LD50, mol/kg |
Fish Toxicity | 1.8920 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | 0.3852 | pIGC50, ug/L |
From admetSAR
Toxicity Profile
Route of Exposure | None |
---|---|
Mechanism of Toxicity | None |
Metabolism | None |
Toxicity Values | None |
Lethal Dose | None |
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
Minimum Risk Level | None |
Health Effects | None |
Treatment | None |
Reference |
|
From T3DB
Taxonomic Classification
Kingdom | Organic compounds |
---|---|
Superclass | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Subclass | Fatty acids and conjugates |
Intermediate Tree Nodes | Not available |
Direct Parent | Medium-chain fatty acids |
Alternative Parents | |
Molecular Framework | Aliphatic acyclic compounds |
Substituents | Medium-chain fatty acid - Straight chain fatty acid - Monocarboxylic acid or derivatives - Carboxylic acid - Carboxylic acid derivative - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Carbonyl group - Aliphatic acyclic compound |
Description | This compound belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. |
From ClassyFire
Targets
- General Function:
- Zinc ion binding
- Specific Function:
- Class-III ADH is remarkably ineffective in oxidizing ethanol, but it readily catalyzes the oxidation of long-chain primary alcohols and the oxidation of S-(hydroxymethyl) glutathione.
- Gene Name:
- ADH5
- Uniprot ID:
- P11766
- Molecular Weight:
- 39723.945 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Retinol binding
- Specific Function:
- C8 is a constituent of the membrane attack complex. C8 binds to the C5B-7 complex, forming the C5B-8 complex. C5-B8 binds C9 and acts as a catalyst in the polymerization of C9. The gamma subunit seems to be able to bind retinol.
- Gene Name:
- C8G
- Uniprot ID:
- P07360
- Molecular Weight:
- 22277.285 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Serine-type endopeptidase activity
- Specific Function:
- Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate.Lactotransferrin is a major iron-binding and multifunctional protein found in exocrine fluids such as breast milk and mucosal secretions. Has antimicrobial activity, which depends on the extracellular cation concentration. Antimicrobial properties include bacteriostasis, which is related to its ability to sequester free iron and thus inhibit microbial growth, as well as direct bactericidal properties leading to the release of lipopolysaccharides from the bacterial outer membrane. Can also prevent bacterial biofilm development in P.aeruginosa infection. Has weak antifungal activity against C.albicans. Has anabolic, differentiating and anti-apoptotic effects on osteoblasts and can also inhibit osteoclastogenesis, possibly playing a role in the regulation of bone growth. Promotes binding of species C adenoviruses to epithelial cells, promoting adenovirus infection. Can inhibit papillomavirus infections. Stimulates the TLR4 signaling pathway leading to NF-kappa-B activation and subsequent pro-inflammatory cytokine production while also interfering with the lipopolysaccharide (LPS)-stimulated TLR4 signaling. Inhibits neutrophil granulocyte migration to sites of apoptosis, when secreted by apoptotic cells. Stimulates VEGFA-mediated endothelial cell migration and proliferation. Binds heparin, chondroitin sulfate and possibly other glycosaminoglycans (GAGs). Also binds specifically to pneumococcal surface protein A (pspA), the lipid A portion of bacterial lipopolysaccharide (LPS), lysozyme and DNA.Lactoferricin binds to the bacterial surface and is crucial for the bactericidal functions. Has some antiviral activity against papillomavirus infection. N-terminal region shows strong antifungal activity against C.albicans. Contains two BBXB heparin-binding consensus sequences that appear to form the predominate functional GAG-binding site.Kaliocin-1 has antimicrobial activity and is able to permeabilize different ions through liposomal membranes.Lactoferroxins A, B and C have opioid antagonist activity. Lactoferroxin A shows preference for mu-receptors, while lactoferroxin B and C have somewhat higher degrees of preference for kappa-receptors than for mu-receptors.The lactotransferrin transferrin-like domain 1 functions as a serine protease of the peptidase S60 family that cuts arginine rich regions. This function contributes to the antimicrobial activity.Isoform DeltaLf: transcription factor with antiproliferative properties and ability to induce cell cycle arrest. Binds to the DeltaLf response element found in the SKP1, BAX, DCPS, and SELH promoters.
- Gene Name:
- LTF
- Uniprot ID:
- P02788
- Molecular Weight:
- 78181.225 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Lipopolysaccharide receptor activity
- Specific Function:
- Binds bacterial lipopolysaccharide (LPS) (PubMed:17803912, PubMed:17569869). Cooperates with TLR4 in the innate immune response to bacterial lipopolysaccharide (LPS), and with TLR2 in the response to cell wall components from Gram-positive and Gram-negative bacteria (PubMed:11160242, PubMed:11593030). Enhances TLR4-dependent activation of NF-kappa-B (PubMed:10359581). Cells expressing both LY96 and TLR4, but not TLR4 alone, respond to LPS (PubMed:10359581).
- Gene Name:
- LY96
- Uniprot ID:
- Q9Y6Y9
- Molecular Weight:
- 18545.345 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Transmembrane signaling receptor activity
- Specific Function:
- Cooperates with LY96 and CD14 to mediate the innate immune response to bacterial lipopolysaccharide (LPS). Acts via MYD88, TIRAP and TRAF6, leading to NF-kappa-B activation, cytokine secretion and the inflammatory response (PubMed:9237759, PubMed:10835634). Also involved in LPS-independent inflammatory responses triggered by free fatty acids, such as palmitate, and Ni(2+). Responses triggered by Ni(2+) require non-conserved histidines and are, therefore, species-specific (PubMed:20711192). In complex with TLR6, promotes sterile inflammation in monocytes/macrophages in response to oxidized low-density lipoprotein (oxLDL) or amyloid-beta 42. In this context, the initial signal is provided by oxLDL- or amyloid-beta 42-binding to CD36. This event induces the formation of a heterodimer of TLR4 and TLR6, which is rapidly internalized and triggers inflammatory response, leading to the NF-kappa-B-dependent production of CXCL1, CXCL2 and CCL9 cytokines, via MYD88 signaling pathway, and CCL5 cytokine, via TICAM1 signaling pathway, as well as IL1B secretion. Binds electronegative LDL (LDL(-)) and mediates the cytokine release induced by LDL(-) (PubMed:23880187).
- Gene Name:
- TLR4
- Uniprot ID:
- O00206
- Molecular Weight:
- 95679.19 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Very-low-density lipoprotein particle receptor activity
- Specific Function:
- Binds VLDL and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Binding to Reelin induces tyrosine phosphorylation of Dab1 and modulation of Tau phosphorylation (By similarity).
- Gene Name:
- VLDLR
- Uniprot ID:
- P98155
- Molecular Weight:
- 96097.45 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Phospholipase activator activity
- Specific Function:
- The large binding pocket can accommodate several single chain phospholipids and fatty acids, GM2A also exhibits some calcium-independent phospholipase activity (By similarity). Binds gangliosides and stimulates ganglioside GM2 degradation. It stimulates only the breakdown of ganglioside GM2 and glycolipid GA2 by beta-hexosaminidase A. It extracts single GM2 molecules from membranes and presents them in soluble form to beta-hexosaminidase A for cleavage of N-acetyl-D-galactosamine and conversion to GM3.
- Gene Name:
- GM2A
- Uniprot ID:
- P17900
- Molecular Weight:
- 20838.1 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Lipid binding
- Specific Function:
- Accelerates the intermembrane transfer of various glycolipids. Catalyzes the transfer of various glycosphingolipids between membranes but does not catalyze the transfer of phospholipids. May be involved in the intracellular translocation of glucosylceramides.
- Gene Name:
- GLTP
- Uniprot ID:
- Q9NZD2
- Molecular Weight:
- 23849.6 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Phospholipase a2 activity
- Specific Function:
- PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined.
- Gene Name:
- PLA2G2D
- Uniprot ID:
- Q9UNK4
- Molecular Weight:
- 16546.1 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Transcriptionally controlled transcription factor. Binds to DNA sites required for the transcription of alpha 1-antitrypsin, apolipoprotein CIII, transthyretin genes and HNF1-alpha. May be essential for development of the liver, kidney and intestine.
- Gene Name:
- HNF4A
- Uniprot ID:
- P41235
- Molecular Weight:
- 52784.205 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Ligand-activated transcription factor. Key regulator of lipid metabolism. Activated by the endogenous ligand 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocholine (16:0/18:1-GPC). Activated by oleylethanolamide, a naturally occurring lipid that regulates satiety. Receptor for peroxisome proliferators such as hypolipidemic drugs and fatty acids. Regulates the peroxisomal beta-oxidation pathway of fatty acids. Functions as transcription activator for the ACOX1 and P450 genes. Transactivation activity requires heterodimerization with RXRA and is antagonized by NR2C2. May be required for the propagation of clock information to metabolic pathways regulated by PER2.
- Gene Name:
- PPARA
- Uniprot ID:
- Q07869
- Molecular Weight:
- 52224.595 Da
References
- Murakami K, Ide T, Suzuki M, Mochizuki T, Kadowaki T: Evidence for direct binding of fatty acids and eicosanoids to human peroxisome proliferators-activated receptor alpha. Biochem Biophys Res Commun. 1999 Jul 14;260(3):609-13. [10403814 ]
- General Function:
- Phospholipid binding
- Specific Function:
- Thought to participate in the regulation of the phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides.
- Gene Name:
- PLA2G2A
- Uniprot ID:
- P14555
- Molecular Weight:
- 16082.525 Da
References
- Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE: The Protein Data Bank. Nucleic Acids Res. 2000 Jan 1;28(1):235-42. [10592235 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
- Gene Name:
- ESR1
- Uniprot ID:
- P03372
- Molecular Weight:
- 66215.45 Da
References
- Sipes NS, Martin MT, Kothiya P, Reif DM, Judson RS, Richard AM, Houck KA, Dix DJ, Kavlock RJ, Knudsen TB: Profiling 976 ToxCast chemicals across 331 enzymatic and receptor signaling assays. Chem Res Toxicol. 2013 Jun 17;26(6):878-95. doi: 10.1021/tx400021f. Epub 2013 May 16. [23611293 ]
- General Function:
- 3-oxoacyl-[acyl-carrier-protein] synthase activity
- Specific Function:
- Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Specific for elongation from C-10 to unsaturated C-16 and C-18 fatty acids.
- Gene Name:
- fabB
- Uniprot ID:
- P0A953
- Molecular Weight:
- 42612.995 Da
- General Function:
- Virion binding
- Specific Function:
- This receptor binds the ferrichrome-iron ligand. It interacts with the TonB protein, which is responsible for energy coupling of the ferrichrome-promoted iron transport system. Acts as a receptor for bacteriophage T5 as well as T1, phi80 and colicin M. Binding of T5 triggers the opening of a high conductance ion channel. Can also transport the antibiotic albomycin.
- Gene Name:
- fhuA
- Uniprot ID:
- P06971
- Molecular Weight:
- 82181.75 Da
- General Function:
- Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for long chain acyl-CoA such as myristoyl-CoA. Does not use acyl-CoA as primer. Its substrate specificity determines the biosynthesis of mycolic acid fatty acid chain, which is characteristic of mycobacterial cell wall.
- Specific Function:
- 3-oxoacyl-[acyl-carrier-protein] synthase activity
- Gene Name:
- fabH
- Uniprot ID:
- P9WNG3
- Molecular Weight:
- 34872.13 Da
- General Function:
- Structural molecule activity
- Specific Function:
- Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host cell receptor to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity).Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (By similarity).Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3 (By similarity).Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity (By similarity).Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity).Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication (By similarity).Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity (By similarity).Protease 3C: cleaves host DDX58/RIG-I and thus contributes to the inhibition of type I interferon production. Cleaves also host PABPC1 (By similarity).RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated (By similarity).
- Uniprot ID:
- Q82122
- Molecular Weight:
- 242242.05 Da
- General Function:
- Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host cell receptor to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).
- Specific Function:
- Atp binding
- Uniprot ID:
- P23008
- General Function:
- Structural molecule activity
- Specific Function:
- Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host VLDLR to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity).Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (By similarity).Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3 (By similarity).Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity (By similarity).Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity).Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication (By similarity).Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity (By similarity).Protease 3C: cleaves host DDX58/RIG-I and thus contributes to the inhibition of type I interferon production. Cleaves also host PABPC1 (By similarity).RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated (By similarity).
- Uniprot ID:
- P04936
- Molecular Weight:
- 241975.505 Da
- General Function:
- Beta-ketoacyl-acyl-carrier-protein synthase ii activity
- Specific Function:
- Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Has a preference for short chain acid substrates and may function to supply the octanoic substrates for lipoic acid biosynthesis.
- Gene Name:
- fabF
- Uniprot ID:
- P0AAI5
- Molecular Weight:
- 43045.39 Da
- General Function:
- Siderophore transmembrane transporter activity
- Specific Function:
- Interacts with outer membrane receptor proteins that carry out high-affinity binding and energy dependent uptake into the periplasmic space of specific substrates such as cobalamin, and various iron compounds (such as iron dicitrate, enterochelin, aerobactin, etc.). In the absence of TonB these receptors bind their substrates but do not carry out active transport. TonB also interacts with some colicins and is involved in the energy-dependent, irreversible steps of bacteriophages phi 80 and T1 infection. It could act to transduce energy from the cytoplasmic membrane to specific energy-requiring processes in the outer membrane, resulting in the release into the periplasm of ligands bound by these outer membrane proteins. Implicated in hydroxy radical-mediated cell death induced by hydroxyurea treatment (PubMed:20005847).
- Gene Name:
- tonB
- Uniprot ID:
- P02929
- Molecular Weight:
- 26094.07 Da
- General Function:
- N-acetyl-anhydromuramoyl-l-alanine amidase activity
- Specific Function:
- Catalyzes the deacylation of acyl-homoserine lactone (AHL or acyl-HSL), releasing homoserine lactone (HSL) and the corresponding fatty acid. Possesses a specificity for the degradation of long-chain acyl-HSLs (side chains of 11 to 14 carbons in length). Degrades 3-oxo-C12-HSL, one of the two main AHL signal molecules of P.aeruginosa, and thereby functions as a quorum quencher, inhibiting the las quorum-sensing system. Therefore, may enable P.aeruginosa to modulate its own quorum-sensing-dependent pathogenic potential. Also appears to be required for pyoverdin biosynthesis.
- Gene Name:
- pvdQ
- Uniprot ID:
- Q9I194
- Molecular Weight:
- 84039.305 Da
From T3DB