Relevant Data

Food Additives Approved by WHO:

  • L-LEUCINE [show]

Flavouring Substances Approved by European Union:

  • L-Leucine [show]

General Information

MaintermL-LEUCINE
Doc TypeASP
CAS Reg.No.(or other ID)61-90-5
Regnum 172.320
172.804

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID6106
IUPAC Name(2S)-2-amino-4-methylpentanoic acid
InChIInChI=1S/C6H13NO2/c1-4(2)3-5(7)6(8)9/h4-5H,3,7H2,1-2H3,(H,8,9)/t5-/m0/s1
InChI KeyROHFNLRQFUQHCH-YFKPBYRVSA-N
Canonical SMILESCC(C)CC(C(=O)O)N
Molecular FormulaC6H13NO2
WikipediaL-Leucine

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight131.175
Hydrogen Bond Donor Count2
Hydrogen Bond Acceptor Count3
Rotatable Bond Count3
Complexity101.0
CACTVS Substructure Key Fingerprint A A A D c c B i M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A H g A Q C A A A D S j B g A Q C C A B A A g A I A A C Q C A A A A A A A A A A A A I G A A A A C A B I A g A A A Q A A E E A A A A A C I A A A M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area63.3
Monoisotopic Mass131.095
Exact Mass131.095
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count9
Defined Atom Stereocenter Count1
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.6686
Human Intestinal AbsorptionHIA+0.9785
Caco-2 PermeabilityCaco2-0.8958
P-glycoprotein SubstrateNon-substrate0.6833
P-glycoprotein InhibitorNon-inhibitor0.9767
Non-inhibitor0.9875
Renal Organic Cation TransporterNon-inhibitor0.9617
Distribution
Subcellular localizationLysosome0.7172
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8483
CYP450 2D6 SubstrateNon-substrate0.7693
CYP450 3A4 SubstrateNon-substrate0.7389
CYP450 1A2 InhibitorNon-inhibitor0.9045
CYP450 2C9 InhibitorNon-inhibitor0.9543
CYP450 2D6 InhibitorNon-inhibitor0.9336
CYP450 2C19 InhibitorNon-inhibitor0.9608
CYP450 3A4 InhibitorNon-inhibitor0.9558
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9910
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9929
Non-inhibitor0.9760
AMES ToxicityNon AMES toxic0.8892
CarcinogensNon-carcinogens0.7139
Fish ToxicityHigh FHMT0.7410
Tetrahymena Pyriformis ToxicityLow TPT0.6849
Honey Bee ToxicityLow HBT0.5810
BiodegradationReady biodegradable0.7417
Acute Oral ToxicityIII0.6794
Carcinogenicity (Three-class)Non-required0.6822

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-0.1813LogS
Caco-2 Permeability0.2633LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.5061LD50, mol/kg
Fish Toxicity2.9289pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.6956pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureNone
Mechanism of ToxicityThis group of essential amino acids are identified as the branched-chain amino acids, BCAAs. Because this arrangement of carbon atoms cannot be made by humans, these amino acids are an essential element in the diet. The catabolism of all three compounds initiates in muscle and yields NADH and FADH2 which can be utilized for ATP generation. The catabolism of all three of these amino acids uses the same enzymes in the first two steps. The first step in each case is a transamination using a single BCAA aminotransferase, with a-ketoglutarate as amine acceptor. As a result, three different a-keto acids are produced and are oxidized using a common branched-chain a-keto acid dehydrogenase, yielding the three different CoA derivatives. Subsequently the metabolic pathways diverge, producing many intermediates. The principal product from valine is propionylCoA, the glucogenic precursor of succinyl-CoA. Isoleucine catabolism terminates with production of acetylCoA and propionylCoA; thus isoleucine is both glucogenic and ketogenic. Leucine gives rise to acetylCoA and acetoacetylCoA, and is thus classified as strictly ketogenic. There are a number of genetic diseases associated with faulty catabolism of the BCAAs. The most common defect is in the branched-chain a-keto acid dehydrogenase. Since there is only one dehydrogenase enzyme for all three amino acids, all three a-keto acids accumulate and are excreted in the urine. The disease is known as Maple syrup urine disease because of the characteristic odor of the urine in afflicted individuals. Mental retardation in these cases is extensive. Unfortunately, since these are essential amino acids, they cannot be heavily restricted in the diet; ultimately, the life of afflicted individuals is short and development is abnormal The main neurological problems are due to poor formation of myelin in the CNS.
MetabolismNone
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsNone
TreatmentNone
Reference
  1. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  2. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6.[12297216 ]
  3. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75.[6696735 ]
  4. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.[15911239 ]
  5. Rainesalo S, Keranen T, Palmio J, Peltola J, Oja SS, Saransaari P: Plasma and cerebrospinal fluid amino acids in epileptic patients. Neurochem Res. 2004 Jan;29(1):319-24.[14992292 ]
  6. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7.[6198473 ]
  7. Deng C, Shang C, Hu Y, Zhang X: Rapid diagnosis of phenylketonuria and other aminoacidemias by quantitative analysis of amino acids in neonatal blood spots by gas chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2002 Jul 25;775(1):115-20.[12101068 ]
  8. Yoshimasa T, Nakao K, Ohtsuki H, Li S, Imura H: Methionine-enkephalin and leucine-enkephalin in human sympathoadrenal system and pheochromocytoma. J Clin Invest. 1982 Mar;69(3):643-50.[7061706 ]
  9. Jansson T, Scholtbach V, Powell TL: Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr Res. 1998 Oct;44(4):532-7.[9773842 ]
  10. Lichtenstein AH, Hachey DL, Millar JS, Jenner JL, Booth L, Ordovas J, Schaefer EJ: Measurement of human apolipoprotein B-48 and B-100 kinetics in triglyceride-rich lipoproteins using [5,5,5-2H3]leucine. J Lipid Res. 1992 Jun;33(6):907-14.[1512514 ]
  11. Mero A: Leucine supplementation and intensive training. Sports Med. 1999 Jun;27(6):347-58.[10418071 ]
  12. Sakamoto M, Nakao K, Yoshimasa T, Ikeda Y, Suda M, Takasu K, Shimbo S, Yanaihara N, Imura H: Occurrence of methionine-enkephalin-Arg6-Gly7-Leu8 with methionine-enkephalin, leucine-enkephalin and methionine-enkephalin-Arg6-Phe7 in human gastric antrum. J Clin Endocrinol Metab. 1983 Jan;56(1):202-4.[6847871 ]
  13. Yudkoff M, Daikhin Y, Nissim I, Horyn O, Luhovyy B, Lazarow A, Nissim I: Brain amino acid requirements and toxicity: the example of leucine. J Nutr. 2005 Jun;135(6 Suppl):1531S-8S.[15930465 ]
  14. Iannoli P, Miller JH, Wang HT, Bode B, Souba WW, Avissar NE, Sax HC: Characterization of L-leucine transport system in brush border membranes from human and rabbit small intestine. Metabolism. 1999 Nov;48(11):1432-6.[10582553 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
SubclassAmino acids, peptides, and analogues
Intermediate Tree NodesAmino acids and derivatives - Alpha amino acids and derivatives
Direct ParentLeucine and derivatives
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsLeucine or derivatives - Alpha-amino acid - L-alpha-amino acid - Branched fatty acid - Methyl-branched fatty acid - Fatty acid - Fatty acyl - Amino acid - Monocarboxylic acid or derivatives - Carboxylic acid - Organic oxide - Organopnictogen compound - Primary amine - Organooxygen compound - Organonitrogen compound - Primary aliphatic amine - Carbonyl group - Organic oxygen compound - Amine - Organic nitrogen compound - Hydrocarbon derivative - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as leucine and derivatives. These are compounds containing leucine or a derivative thereof resulting from reaction of leucine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.

From ClassyFire


Targets

General Function:
Leucine-trna ligase activity
Specific Function:
Catalyzes the specific attachment of an amino acid to its cognate tRNA in a two step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. Exhibits a post-transfer editing activity to hydrolyze mischarged tRNAs.
Gene Name:
LARS
Uniprot ID:
Q9P2J5
Molecular Weight:
134465.155 Da
References
  1. Dohm JC, Vingron M, Staub E: Horizontal gene transfer in aminoacyl-tRNA synthetases including leucine-specific subtypes. J Mol Evol. 2006 Oct;63(4):437-47. Epub 2006 Sep 4. [16955236 ]
General Function:
Leucine-trna ligase activity
Gene Name:
LARS2
Uniprot ID:
Q15031
Molecular Weight:
101975.43 Da
References
  1. Lue SW, Kelley SO: A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation. Biochemistry. 2007 Apr 17;46(15):4466-72. Epub 2007 Mar 23. [17378584 ]
General Function:
S-adenosylmethionine-dependent methyltransferase activity
Specific Function:
Methylates the carboxyl group of the C-terminal leucine residue of protein phosphatase 2A catalytic subunits to form alpha-leucine ester residues.
Gene Name:
LCMT1
Uniprot ID:
Q9UIC8
Molecular Weight:
38378.695 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
Trna methyltransferase activity
Specific Function:
Probable S-adenosyl-L-methionine-dependent methyltransferase that acts as a component of the wybutosine biosynthesis pathway. Wybutosine is a hyper modified guanosine with a tricyclic base found at the 3'-position adjacent to the anticodon of eukaryotic phenylalanine tRNA (By similarity). May methylate the carboxyl group of leucine residues to form alpha-leucine ester residues.
Gene Name:
LCMT2
Uniprot ID:
O60294
Molecular Weight:
75601.095 Da
References
  1. Imming P, Sinning C, Meyer A: Drugs, their targets and the nature and number of drug targets. Nat Rev Drug Discov. 2006 Oct;5(10):821-34. [17016423 ]
General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids.
Gene Name:
BCAT2
Uniprot ID:
O15382
Molecular Weight:
44287.445 Da
References
  1. Berger BJ, English S, Chan G, Knodel MH: Methionine regeneration and aminotransferases in Bacillus subtilis, Bacillus cereus, and Bacillus anthracis. J Bacteriol. 2003 Apr;185(8):2418-31. [12670965 ]
General Function:
L-valine transaminase activity
Specific Function:
Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine.
Gene Name:
BCAT1
Uniprot ID:
P54687
Molecular Weight:
42965.815 Da
References
  1. Saito M, Nishimura K, Wakabayashi S, Kurihara T, Nagata Y: Purification of branched-chain amino acid aminotransferase from Helicobacter pylori NCTC 11637. Amino Acids. 2007 Sep;33(3):445-9. Epub 2006 Nov 2. [17077963 ]
General Function:
Pyrophosphatase activity
Specific Function:
This isozyme may play a role in skeletal mineralization.
Gene Name:
ALPL
Uniprot ID:
P05186
Molecular Weight:
57304.435 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Zinc ion binding
Gene Name:
ALPI
Uniprot ID:
P09923
Molecular Weight:
56811.695 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
Phospholipase a2 activator activity
Specific Function:
Involved in the maintenance of ubiquitin levels.
Gene Name:
PLAA
Uniprot ID:
Q9Y263
Molecular Weight:
87156.21 Da
References
  1. Lanier M, Sergienko E, Simao AM, Su Y, Chung T, Millan JL, Cashman JR: Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem. 2010 Jan 15;18(2):573-9. doi: 10.1016/j.bmc.2009.12.012. Epub 2009 Dec 11. [20031422 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
References
  1. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]

From T3DB