Relevant Data

Food Additives Approved by WHO:

  • L-ARGININE [show]

Flavouring Substances Approved by European Union:

  • L-Arginine [show]

General Information

MaintermL-ARGININE
Doc TypeASP
CAS Reg.No.(or other ID)74-79-3
Regnum 172.320

From www.fda.gov

Computed Descriptors

Download SDF
2D Structure
CID6322
IUPAC Name(2S)-2-amino-5-(diaminomethylideneamino)pentanoic acid
InChIInChI=1S/C6H14N4O2/c7-4(5(11)12)2-1-3-10-6(8)9/h4H,1-3,7H2,(H,11,12)(H4,8,9,10)/t4-/m0/s1
InChI KeyODKSFYDXXFIFQN-BYPYZUCNSA-N
Canonical SMILESC(CC(C(=O)O)N)CN=C(N)N
Molecular FormulaC6H14N4O2
Wikipediaarginine hydrochloride

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight174.204
Hydrogen Bond Donor Count4
Hydrogen Bond Acceptor Count4
Rotatable Bond Count5
Complexity176.0
CACTVS Substructure Key Fingerprint A A A D c c B j s A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A H g A Q C A A A C C j B g A Q B C A J A A g A o A A C Q L A A A A A E A A A A A A I G A A A A C A B I A g A A A Q A A E E A A A A A C Y E Q A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area128.0
Monoisotopic Mass174.112
Exact Mass174.112
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count12
Defined Atom Stereocenter Count1
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.6926
Human Intestinal AbsorptionHIA+0.7537
Caco-2 PermeabilityCaco2-0.7315
P-glycoprotein SubstrateNon-substrate0.5352
P-glycoprotein InhibitorNon-inhibitor0.9846
Non-inhibitor0.9156
Renal Organic Cation TransporterNon-inhibitor0.7389
Distribution
Subcellular localizationMitochondria0.6201
Metabolism
CYP450 2C9 SubstrateNon-substrate0.7939
CYP450 2D6 SubstrateNon-substrate0.6806
CYP450 3A4 SubstrateNon-substrate0.7967
CYP450 1A2 InhibitorNon-inhibitor0.8006
CYP450 2C9 InhibitorNon-inhibitor0.9251
CYP450 2D6 InhibitorNon-inhibitor0.9270
CYP450 2C19 InhibitorNon-inhibitor0.9025
CYP450 3A4 InhibitorNon-inhibitor0.8813
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9954
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9590
Non-inhibitor0.9709
AMES ToxicityAMES toxic0.6882
CarcinogensNon-carcinogens0.9304
Fish ToxicityLow FHMT0.8565
Tetrahymena Pyriformis ToxicityLow TPT0.7700
Honey Bee ToxicityLow HBT0.7135
BiodegradationReady biodegradable0.7386
Acute Oral ToxicityIV0.6176
Carcinogenicity (Three-class)Non-required0.6495

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-1.4289LogS
Caco-2 Permeability-0.0394LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.5310LD50, mol/kg
Fish Toxicity2.6933pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.3374pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureAbsorbed from the lumen of the small intestine into the enterocytes. Absorption is efficient and occurs by an active transport mechanism.
Mechanism of ToxicityMany of supplemental L-arginine's activities, including its possible anti-atherogenic actions, may be accounted for by its role as the precursor to nitric oxide or NO. NO is produced by all tissues of the body and plays very important roles in the cardiovascular system, immune system and nervous system. NO is formed from L-arginine via the enzyme nitric oxide synthase or synthetase (NOS), and the effects of NO are mainly mediated by 3,'5' -cyclic guanylate or cyclic GMP. NO activates the enzyme guanylate cyclase, which catalyzes the synthesis of cyclic GMP from guanosine triphosphate or GTP. Cyclic GMP is converted to guanylic acid via the enzyme cyclic GMP phosphodiesterase. NOS is a heme-containing enzyme with some sequences similar to cytochrome P-450 reductase. Several isoforms of NOS exist, two of which are constitutive and one of which is inducible by immunological stimuli. The constitutive NOS found in the vascular endothelium is designated eNOS and that present in the brain, spinal cord and peripheral nervous system is designated nNOS. The form of NOS induced by immunological or inflammatory stimuli is known as iNOS. iNOS may be expressed constitutively in select tissues such as lung epithelium. All the nitric oxide synthases use NADPH (reduced nicotinamide adenine dinucleotide phosphate) and oxygen as cosubstrates, as well as the cofactors FAD (flavin adenine dinucleotide), FMN (flavin mononucleotide), tetrahydrobiopterin and heme. Interestingly, ascorbic acid appears to enhance NOS activity by increasing intracellular tetrahydrobiopterin. eNOS and nNOS synthesize NO in response to an increased concentration of calcium ions or in some cases in response to calcium-independent stimuli, such as shear stress. In vitro studies of NOS indicate that the Km of the enzyme for L-arginine is in the micromolar range. The concentration of L-arginine in endothelial cells, as well as in other cells, and in plasma is in the millimolar range. What this means is that, under physiological conditions, NOS is saturated with its L-arginine substrate. In other words, L-arginine would not be expected to be rate-limiting for the enzyme, and it would not appear that supraphysiological levels of L-arginine which could occur with oral supplementation of the amino acid^would make any difference with regard to NO production. The reaction would appear to have reached its maximum level. However, in vivo studies have demonstrated that, under certain conditions, e.g. hypercholesterolemia, supplemental L-arginine could enhance endothelial-dependent vasodilation and NO production.
MetabolismSome metabolism of L-arginine takes place in the enterocytes. L-arginine not metabolized in the enterocytes enters the portal circulation from whence it is transported to the liver, where again some portion of the amino acid is metabolized.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsNone
TreatmentNone
Reference
  1. Alba-Roth J, Muller OA, Schopohl J, von Werder K: Arginine stimulates growth hormone secretion by suppressing endogenous somatostatin secretion. J Clin Endocrinol Metab. 1988 Dec;67(6):1186-9.[2903866 ]
  2. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  3. Morris SM Jr: Enzymes of arginine metabolism. J Nutr. 2004 Oct;134(10 Suppl):2743S-2747S; discussion 2765S-2767S.[15465778 ]
  4. Schulman SP, Becker LC, Kass DA, Champion HC, Terrin ML, Forman S, Ernst KV, Kelemen MD, Townsend SN, Capriotti A, Hare JM, Gerstenblith G: L-arginine therapy in acute myocardial infarction: the Vascular Interaction With Age in Myocardial Infarction (VINTAGE MI) randomized clinical trial. JAMA. 2006 Jan 4;295(1):58-64.[16391217 ]
  5. Mizutani N, Hayakawa C, Ohya Y, Watanabe K, Watanabe Y, Mori A: Guanidino compounds in hyperargininemia. Tohoku J Exp Med. 1987 Nov;153(3):197-205.[3433275 ]
  6. Engelborghs S, Marescau B, De Deyn PP: Amino acids and biogenic amines in cerebrospinal fluid of patients with Parkinson's disease. Neurochem Res. 2003 Aug;28(8):1145-50.[12834252 ]
  7. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6.[12297216 ]
  8. Peng CT, Wu KH, Lan SJ, Tsai JJ, Tsai FJ, Tsai CH: Amino acid concentrations in cerebrospinal fluid in children with acute lymphoblastic leukemia undergoing chemotherapy. Eur J Cancer. 2005 May;41(8):1158-63. Epub 2005 Apr 14.[15911239 ]
  9. Hagenfeldt L, Bjerkenstedt L, Edman G, Sedvall G, Wiesel FA: Amino acids in plasma and CSF and monoamine metabolites in CSF: interrelationship in healthy subjects. J Neurochem. 1984 Mar;42(3):833-7.[6198473 ]
  10. Mori A, Watanabe Y, Fujimoto N: Fluorometrical analysis of guanidino compounds in human cerebrospinal fluid. J Neurochem. 1982 Feb;38(2):448-50.[7108550 ]
  11. Haas W, Grabe K, Geis C, Pach T, Stoll K, Fuchs M, Haberl B, Loy C: Recognition and invasion of human skin by Schistosoma mansoni cercariae: the key-role of L-arginine. Parasitology. 2002 Feb;124(Pt 2):153-67.[11860033 ]
  12. Stothers L, Laher I, Christ GT: A review of the L-arginine - nitric oxide - guanylate cyclase pathway as a mediator of lower urinary tract physiology and symptoms. Can J Urol. 2003 Oct;10(5):1971-80.[14633324 ]
  13. Avogaro A, Toffolo G, Kiwanuka E, de Kreutzenberg SV, Tessari P, Cobelli C: L-arginine-nitric oxide kinetics in normal and type 2 diabetic subjects: a stable-labelled 15N arginine approach. Diabetes. 2003 Mar;52(3):795-802.[12606522 ]
  14. Kotikoski H, Moilanen E, Vapaatalo H, Aine E: Biochemical markers of the L-arginine-nitric oxide pathway in the aqueous humour in glaucoma patients. Acta Ophthalmol Scand. 2002 Apr;80(2):191-5.[11952488 ]
  15. Noris M, Todeschini M, Cassis P, Pasta F, Cappellini A, Bonazzola S, Macconi D, Maucci R, Porrati F, Benigni A, Picciolo C, Remuzzi G: L-arginine depletion in preeclampsia orients nitric oxide synthase toward oxidant species. Hypertension. 2004 Mar;43(3):614-22. Epub 2004 Jan 26.[14744923 ]
  16. Kirkeby HJ, Svane D, Poulsen J, Tottrup A, Forman A, Andersson KE: Role of the L-arginine/nitric oxide pathway in relaxation of isolated human penile cavernous tissue and circumflex veins. Acta Physiol Scand. 1993 Nov;149(3):385-92.[8310843 ]
  17. Crenn P, Coudray-Lucas C, Thuillier F, Cynober L, Messing B: Postabsorptive plasma citrulline concentration is a marker of absorptive enterocyte mass and intestinal failure in humans. Gastroenterology. 2000 Dec;119(6):1496-505.[11113071 ]
  18. Bauchart-Thevret C, Cui L, Wu G, Burrin DG: Arginine-induced stimulation of protein synthesis and survival in IPEC-J2 cells is mediated by mTOR but not nitric oxide. Am J Physiol Endocrinol Metab. 2010 Dec;299(6):E899-909. doi: 10.1152/ajpendo.00068.2010. Epub 2010 Sep 14.[20841502 ]
  19. Linden KC, Wadley GD, Garnham AP, McConell GK: Effect of l-arginine infusion on glucose disposal during exercise in humans. Med Sci Sports Exerc. 2011 Sep;43(9):1626-34. doi: 10.1249/MSS.0b013e318212a317.[21311355 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
SubclassAmino acids, peptides, and analogues
Intermediate Tree NodesAmino acids and derivatives - Alpha amino acids and derivatives - Alpha amino acids
Direct ParentL-alpha-amino acids
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsL-alpha-amino acid - Fatty acid - Guanidine - Amino acid - Carboxylic acid - Monocarboxylic acid or derivatives - Carboximidamide - Propargyl-type 1,3-dipolar organic compound - Organic 1,3-dipolar compound - Amine - Hydrocarbon derivative - Organic oxide - Primary amine - Organooxygen compound - Organonitrogen compound - Organopnictogen compound - Primary aliphatic amine - Organic oxygen compound - Organic nitrogen compound - Carbonyl group - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as l-alpha-amino acids. These are alpha amino acids which have the L-configuration of the alpha-carbon atom.

From ClassyFire


Targets

General Function:
Argininosuccinate lyase activity
Gene Name:
ASL
Uniprot ID:
P04424
Molecular Weight:
51657.505 Da
References
  1. Mori M: Regulation of nitric oxide synthesis and apoptosis by arginase and arginine recycling. J Nutr. 2007 Jun;137(6 Suppl 2):1616S-1620S. [17513437 ]
General Function:
L-ornithine transmembrane transporter activity
Specific Function:
High-affinity, low capacity permease involved in the transport of the cationic amino acids (arginine, lysine and ornithine) in non-hepatic tissues. May also function as an ecotropic retroviral leukemia receptor.
Gene Name:
SLC7A1
Uniprot ID:
P30825
Molecular Weight:
67637.62 Da
References
  1. Cerec V, Piquet-Pellorce C, Aly HA, Touzalin AM, Jegou B, Bauche F: Multiple pathways for cationic amino acid transport in rat seminiferous tubule cells. Biol Reprod. 2007 Feb;76(2):241-9. Epub 2006 Oct 25. [17065601 ]
General Function:
Tetrahydrobiopterin binding
Specific Function:
Produces nitric oxide (NO) which is implicated in vascular smooth muscle relaxation through a cGMP-mediated signal transduction pathway. NO mediates vascular endothelial growth factor (VEGF)-induced angiogenesis in coronary vessels and promotes blood clotting through the activation of platelets.Isoform eNOS13C: Lacks eNOS activity, dominant-negative form that may down-regulate eNOS activity by forming heterodimers with isoform 1.
Gene Name:
NOS3
Uniprot ID:
P29474
Molecular Weight:
133287.62 Da
References
  1. Haruna Y, Morita Y, Komai N, Yada T, Sakuta T, Tomita N, Fox DA, Kashihara N: Endothelial dysfunction in rat adjuvant-induced arthritis: vascular superoxide production by NAD(P)H oxidase and uncoupled endothelial nitric oxide synthase. Arthritis Rheum. 2006 Jun;54(6):1847-55. [16729278 ]
General Function:
Putrescine transmembrane transporter activity
Specific Function:
Antizyme inhibitor protein that positively regulates ornithine decarboxylase (ODC) activity and polyamine uptake by counteracting the negative effect of antizymes OAZ1, OAZ2 and OAZ3 on ODC1 activity (PubMed:17900240). Inhibits antizyme-dependent ODC1 degradation by binding to antizymes. Releases ODC1 from its inactive complex with antizymes, leading to formation of the catalytically active ODC1. Participates in the morphological integrity of the trans-Golgi network (TGN) and functions as a regulator of intracellular secretory vesicle trafficking (PubMed:20188728).
Gene Name:
AZIN2
Uniprot ID:
Q96A70
Molecular Weight:
49979.185 Da
References
  1. Wu N, Su RB, Li J: Agmatine and imidazoline receptors: their role in opioid analgesia, tolerance and dependence. Cell Mol Neurobiol. 2008 Aug;28(5):629-41. Epub 2007 Jul 25. [17653850 ]
General Function:
Toxic substance binding
Specific Function:
Is indirectly involved in the control of blood pressure.
Gene Name:
ASS1
Uniprot ID:
P00966
Molecular Weight:
46530.055 Da
References
  1. Szlosarek PW, Grimshaw MJ, Wilbanks GD, Hagemann T, Wilson JL, Burke F, Stamp G, Balkwill FR: Aberrant regulation of argininosuccinate synthetase by TNF-alpha in human epithelial ovarian cancer. Int J Cancer. 2007 Jul 1;121(1):6-11. [17354225 ]
General Function:
Metal ion binding
Specific Function:
May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to NO synthase. Since NO synthase is found in the penile corpus cavernosum smooth muscle, the clitoral corpus cavernosum and the vagina, arginase II plays a role in both male and female sexual arousal. It is therefore a potential target for the treatment of male and female sexual arousal disorders.
Gene Name:
ARG2
Uniprot ID:
P78540
Molecular Weight:
38577.515 Da
References
  1. Hood HM, Spevak CC, Sachs MS: Evolutionary changes in the fungal carbamoyl-phosphate synthetase small subunit gene and its associated upstream open reading frame. Fungal Genet Biol. 2007 Feb;44(2):93-104. Epub 2006 Sep 18. [16979358 ]
General Function:
L-ornithine transmembrane transporter activity
Specific Function:
Mediates the uptake of the cationic amino acids arginine, lysine and ornithine in a sodium-independent manner.
Gene Name:
SLC7A3
Uniprot ID:
Q8WY07
Molecular Weight:
67168.31 Da
References
  1. Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, Snyder SH: The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci. 2007 Jan 17;27(3):449-58. [17234578 ]
General Function:
L-ornithine transmembrane transporter activity
Specific Function:
Involved in the transport of the cationic amino acids (arginine, lysine and ornithine).
Gene Name:
SLC7A4
Uniprot ID:
O43246
Molecular Weight:
68267.17 Da
References
  1. Rotmann A, Simon A, Martine U, Habermeier A, Closs EI: Activation of classical protein kinase C decreases transport via systems y+ and y+L. Am J Physiol Cell Physiol. 2007 Jun;292(6):C2259-68. Epub 2007 Feb 28. [17329401 ]
General Function:
Tetrahydrobiopterin binding
Specific Function:
Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such COX2. As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR, MSN and VIM.
Gene Name:
NOS2
Uniprot ID:
P35228
Molecular Weight:
131116.3 Da
References
  1. Martin NI, Woodward JJ, Winter MB, Marletta MA: 4,4-Difluorinated analogues of l-arginine and N(G)-hydroxy-l-arginine as mechanistic probes for nitric oxide synthase. Bioorg Med Chem Lett. 2009 Mar 15;19(6):1758-62. doi: 10.1016/j.bmcl.2009.01.076. Epub 2009 Feb 18. [19230661 ]

From T3DB