Relevant Data

Food Additives Approved in the United States

Food Additives Approved by WHO:


General Information

Chemical nameAluminium
E No.E 173
INS.173
CAS number7429-90-5
GroupNo

From webgate.ec.europa.eu


Authorisation of the use of this additive in Food Additives

The additive is authorised to be used in the following category(ies):
category(ies) Individual restriction(s)/exception(s) footnote
  • Decorations, coatings and fillings, except fruit-based fillings covered by category 4.2.4 (5.4)(legislation:1129/2011, applicable as from 01/06/2013)

  • quantum satis , only external coating of sugar confectionery for the decoration of cakes and pastries

From webgate.ec.europa.eu


Computed Descriptors

Download SDF
2D Structure
CID5359268
IUPAC Namealuminum
InChIInChI=1S/Al
InChI KeyXAGFODPZIPBFFR-UHFFFAOYSA-N
Canonical SMILES[Al]
Molecular FormulaAl
Wikipediaaluminum;magnesium;silicon;hydroxide;tetradecahydrate

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight26.982
Hydrogen Bond Donor Count0
Hydrogen Bond Acceptor Count0
Rotatable Bond Count0
Complexity0.0
CACTVS Substructure Key Fingerprint A A A D c Q A A A A A A A B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area0.0
Monoisotopic Mass26.982
Exact Mass26.982
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count1
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9733
Human Intestinal AbsorptionHIA+0.9838
Caco-2 PermeabilityCaco2+0.7354
P-glycoprotein SubstrateNon-substrate0.8810
P-glycoprotein InhibitorNon-inhibitor0.9787
Non-inhibitor0.9858
Renal Organic Cation TransporterNon-inhibitor0.9108
Distribution
Subcellular localizationLysosome0.5856
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8305
CYP450 2D6 SubstrateNon-substrate0.8255
CYP450 3A4 SubstrateNon-substrate0.8145
CYP450 1A2 InhibitorNon-inhibitor0.8813
CYP450 2C9 InhibitorNon-inhibitor0.9392
CYP450 2D6 InhibitorNon-inhibitor0.9716
CYP450 2C19 InhibitorNon-inhibitor0.9571
CYP450 3A4 InhibitorNon-inhibitor0.9855
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.8820
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9547
Non-inhibitor0.9746
AMES ToxicityNon AMES toxic0.9633
CarcinogensCarcinogens 0.6640
Fish ToxicityLow FHMT0.6181
Tetrahymena Pyriformis ToxicityLow TPT0.6631
Honey Bee ToxicityHigh HBT0.8213
BiodegradationReady biodegradable0.7326
Acute Oral ToxicityIII0.5846
Carcinogenicity (Three-class)Warning0.4769

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-1.0958LogS
Caco-2 Permeability1.6017LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity2.0135LD50, mol/kg
Fish Toxicity1.5413pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.7156pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureOral ; inhalation
Mechanism of ToxicityThe main targets of aluminum are the central nervous system and bones. Aluminum binds to dietary phosphorus and impairs gastrointestinal absorption of phosphorus. The decreased phosphate body burden results in osteomalacia and rickets. Aluminum's neurotoxicity is believed to involve different mechanisms. Changes in cytoskeletal protein functions as a result of altered phosphorylation, proteolysis, transport, and synthesis are believed to be one cause. Aluminum may induce neurobehavioral effects by affecting permeability of the blood-brain barrier, cholinergic activity, signal transduction pathways, lipid peroxidation, and impair neuronal glutamate nitric oxide-cyclic GMP pathway, as well as interfere with metabolism of essential trace elements because of similar coordination chemistries and consequent competitive interactions. It has been suggested that aluminum's interaction with estrogen receptors increases the expression of estrogen-related genes and thereby contributes to the progression of breast cancer , but studies have not been able to establish a clear link between aluminum and increased risk of breast cancer . Certain aluminum salts induce immune responses by activating inflammasomes. Aluminum Acetate is an astringent. An astrignent is a chemical that tends to shrink or constrict body tissues, usually locally after topical medicinal application. The shrinkage or constriction is through osmotic flow of water (or other fluids) away from the area where the astringent was applied. Astringent medicines cause shrinkage of mucous membranes or exposed tissues and are often used internally to check discharge of blood serum or mucous secretions. This can happen with a sore throat, hemorrhages, diarrhea, or with peptic ulcers. Externally applied astringents, which cause mild coagulation of skin proteins, dry, harden, and protect the skin. Acne sufferers are often advised to use astringents if they have oily skin. Astringents also help heal stretch marks and other scars. Mild astringent solutions are used in the relief of such minor skin irritations as those resulting from superficial cuts, allergies, insect bites, or fungal infections such as athlete's foot.
MetabolismAluminum is poorly absorbed following oral or inhalation exposure and is essentially not absorbed dermally. The bioavailability of aluminum is strongly influenced by the aluminum compound and the presence of dietary constituents which can complex with aluminum and enhance or inhibit its absorption. Aluminum binds to various ligands in the blood and distributes to every organ, with highest concentrations found in bone and lung tissues. In living organisms, aluminum is believed to exist in four different forms: as free ions, as low-molecular-weight complexes, as physically bound macromolecular complexes, and as covalently bound macromolecular complexes. Absorbed aluminum is excreted principally in the urine and, to a lesser extent, in the bile, while unabsorbed aluminum is excreted in the faeces.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)Not listed by IARC. IARC classified aluminum production as carcinogenic to humans (Group 1), but did not implicate aluminum itself as a human carcinogen. A link between use of aluminum-containing antiperspirants and increased risk of breast cancer has been proposed , but studies have not been able to establish a clear link .
Minimum Risk LevelIntermediate Oral: 1.0 mg/kg/day Chronic Oral: 1.0 mg/kg/day
Health EffectsAluminum targets the nervous system and causes decreased nervous system performance and is associated with altered function of the blood-brain barrier. The accumulation of aluminum in the body may cause bone or brain diseases. High levels of aluminum have been linked to Alzheimer’s disease. A small percentage of people are allergic to aluminium and experience contact dermatitis, digestive disorders, vomiting or other symptoms upon contact or ingestion of products containing aluminium. (L739, L740)
TreatmentNone
Reference
  1. Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006 May-Jun;26(3):191-7.[16489580 ]
  2. Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J: Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11.[19439372 ]
  3. Klein GL: Aluminum: new recognition of an old problem. Curr Opin Pharmacol. 2005 Dec;5(6):637-40. Epub 2005 Sep 28.[16198633 ]
  4. Strunecka A, Strunecky O, Patocka J: Fluoride plus aluminum: useful tools in laboratory investigations, but messengers of false information. Physiol Res. 2002;51(6):557-64.[12511178 ]
  5. Elmore AR: Final report on the safety assessment of aluminum silicate, calcium silicate, magnesium aluminum silicate, magnesium silicate, magnesium trisilicate, sodium magnesium silicate, zirconium silicate, attapulgite, bentonite, Fuller's earth, hectorite, kaolin, lithium magnesium silicate, lithium magnesium sodium silicate, montmorillonite, pyrophyllite, and zeolite. Int J Toxicol. 2003;22 Suppl 1:37-102.[12851164 ]
  6. Savory J, Herman MM, Ghribi O: Intracellular mechanisms underlying aluminum-induced apoptosis in rabbit brain. J Inorg Biochem. 2003 Sep 15;97(1):151-4.[14507471 ]
  7. Arnold CJ, Miller GG, Zello GA: Parenteral nutrition-associated cholestasis in neonates: the role of aluminum. Nutr Rev. 2003 Sep;61(9):306-10.[14552065 ]
  8. Zatta P, Lucchini R, van Rensburg SJ, Taylor A: The role of metals in neurodegenerative processes: aluminum, manganese, and zinc. Brain Res Bull. 2003 Nov 15;62(1):15-28.[14596888 ]
  9. Gherardi RK, Authier FJ: Aluminum inclusion macrophagic myofasciitis: a recently identified condition. Immunol Allergy Clin North Am. 2003 Nov;23(4):699-712.[14753387 ]
  10. Becaria A, Campbell A, Bondy SC: Aluminum as a toxicant. Toxicol Ind Health. 2002 Aug;18(7):309-20.[15068131 ]
  11. Kawahara M: Effects of aluminum on the nervous system and its possible link with neurodegenerative diseases. J Alzheimers Dis. 2005 Nov;8(2):171-82; discussion 209-15.[16308486 ]
  12. Aremu DA, Meshitsuka S: Some aspects of astroglial functions and aluminum implications for neurodegeneration. Brain Res Rev. 2006 Aug 30;52(1):193-200. Epub 2006 Mar 10.[16529821 ]
  13. Perl DP, Moalem S: Aluminum and Alzheimer's disease, a personal perspective after 25 years. J Alzheimers Dis. 2006;9(3 Suppl):291-300.[17004365 ]
  14. Savory J, Herman MM, Ghribi O: Mechanisms of aluminum-induced neurodegeneration in animals: Implications for Alzheimer's disease. J Alzheimers Dis. 2006 Nov;10(2-3):135-44.[17119283 ]
  15. Campbell A: The role of aluminum and copper on neuroinflammation and Alzheimer's disease. J Alzheimers Dis. 2006 Nov;10(2-3):165-72.[17119285 ]
  16. Miu AC, Benga O: Aluminum and Alzheimer's disease: a new look. J Alzheimers Dis. 2006 Nov;10(2-3):179-201.[17119287 ]
  17. Yokel RA: Blood-brain barrier flux of aluminum, manganese, iron and other metals suspected to contribute to metal-induced neurodegeneration. J Alzheimers Dis. 2006 Nov;10(2-3):223-53.[17119290 ]
  18. Domingo JL: Aluminum and other metals in Alzheimer's disease: a review of potential therapy with chelating agents. J Alzheimers Dis. 2006 Nov;10(2-3):331-41.[17119296 ]
  19. Riggs K, Keller M, Humphreys TR: Ablative laser resurfacing: high-energy pulsed carbon dioxide and erbium:yttrium-aluminum-garnet. Clin Dermatol. 2007 Sep-Oct;25(5):462-73.[17870524 ]
  20. Hem SL, Hogenesch H: Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation. Expert Rev Vaccines. 2007 Oct;6(5):685-98.[17931150 ]
  21. Nokleby H: Neurological adverse events of immunization: experience with an aluminum adjuvanted meningococcal B outer membrane vesicle vaccine. Expert Rev Vaccines. 2007 Oct;6(5):863-9.[17931164 ]
  22. Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, Momoli F, Krewski D: Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Crit Rev Toxicol. 2014 Oct;44 Suppl 4:1-80. doi: 10.3109/10408444.2014.934439.[25233067 ]

From T3DB


Taxonomic Classification

KingdomInorganic compounds
SuperclassHomogeneous metal compounds
ClassHomogeneous post-transition metal compounds
SubclassNot available
Intermediate Tree NodesNot available
Direct ParentHomogeneous post-transition metal compounds
Alternative Parents
Molecular FrameworkNot available
SubstituentsHomogeneous post-transition metal
DescriptionThis compound belongs to the class of inorganic compounds known as homogeneous post-transition metal compounds. These are inorganic compounds containing only metal atoms,with the largest atom being a post-transition metal atom.

From ClassyFire


Targets

General Function:
Transferrin receptor binding
Specific Function:
Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate. It is responsible for the transport of iron from sites of absorption and heme degradation to those of storage and utilization. Serum transferrin may also have a further role in stimulating cell proliferation.
Gene Name:
TF
Uniprot ID:
P02787
Molecular Weight:
77063.195 Da
References
  1. Golub MS, Han B, Keen CL: Aluminum alters iron and manganese uptake and regulation of surface transferrin receptors in primary rat oligodendrocyte cultures. Brain Res. 1996 May 6;719(1-2):72-7. [8782865 ]
General Function:
Steroid hormone binding
Specific Function:
This is the catalytic component of the active enzyme, which catalyzes the hydrolysis of ATP coupled with the exchange of sodium and potassium ions across the plasma membrane. This action creates the electrochemical gradient of sodium and potassium ions, providing the energy for active transport of various nutrients.
Gene Name:
ATP1A1
Uniprot ID:
P05023
Molecular Weight:
112895.01 Da
References
  1. Kohila T, Tahti H: Effects of aluminium and lead on ATPase activity of knockout +/- mouse cerebral synaptosomes in vitro. Altern Lab Anim. 2004 Oct;32(4):361-7. [15651920 ]
General Function:
Zinc ion binding
Specific Function:
Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE-independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial association with multiprotein coactivator complexes through LXXLL motifs of their respective components. Mutual transrepression occurs between the estrogen receptor (ER) and NF-kappa-B in a cell-type specific manner. Decreases NF-kappa-B DNA-binding activity and inhibits NF-kappa-B-mediated transcription from the IL6 promoter and displace RELA/p65 and associated coregulators from the promoter. Recruited to the NF-kappa-B response element of the CCL2 and IL8 promoters and can displace CREBBP. Present with NF-kappa-B components RELA/p65 and NFKB1/p50 on ERE sequences. Can also act synergistically with NF-kappa-B to activate transcription involving respective recruitment adjacent response elements; the function involves CREBBP. Can activate the transcriptional activity of TFF1. Also mediates membrane-initiated estrogen signaling involving various kinase cascades. Isoform 3 is involved in activation of NOS3 and endothelial nitric oxide production. Isoforms lacking one or several functional domains are thought to modulate transcriptional activity by competitive ligand or DNA binding and/or heterodimerization with the full length receptor. Essential for MTA1-mediated transcriptional regulation of BRCA1 and BCAS3. Isoform 3 can bind to ERE and inhibit isoform 1.
Gene Name:
ESR1
Uniprot ID:
P03372
Molecular Weight:
66215.45 Da
References
  1. Darbre PD: Metalloestrogens: an emerging class of inorganic xenoestrogens with potential to add to the oestrogenic burden of the human breast. J Appl Toxicol. 2006 May-Jun;26(3):191-7. [16489580 ]
General Function:
Serine-type endopeptidase activity
Specific Function:
Glandular kallikreins cleave Met-Lys and Arg-Ser bonds in kininogen to release Lys-bradykinin.
Gene Name:
KLK1
Uniprot ID:
P06870
Molecular Weight:
28889.425 Da
References
  1. De Sousa MO, Santoro MM, De Souza Figueiredo AF: The effect of cations on the amidase activity of human tissue kallikrein: 1-linear competitive inhibition by sodium, potassium, calcium and magnesium. 2-linear mixed inhibition by aluminium. J Enzyme Inhib Med Chem. 2004 Aug;19(4):317-25. [15558947 ]
General Function:
Transcription factor binding
Specific Function:
As the sensor component of the NLRP3 inflammasome, plays a crucial role in innate immunity and inflammation. In response to pathogens and other damage-associated signals, initiates the formation of the inflammasome polymeric complex, made of NLRP3, PYCARD and CASP1 (and possibly CASP4 and CASP5). Recruitement of proCASP1 to the inflammasome promotes its activation and CASP1-catalyzed IL1B and IL18 maturation and secretion in the extracellular milieu. Activation of NLRP3 inflammasome is also required for HMGB1 secretion (PubMed:22801494). The active cytokines and HMGB1 stimulate inflammatory responses. Inflammasomes can also induce pyroptosis, an inflammatory form of programmed cell death. Under resting conditions, NLRP3 is autoinhibited. NLRP3 activation stimuli include extracellular ATP, reactive oxygen species, K(+) efflux, crystals of monosodium urate or cholesterol, beta-amyloid fibers, environmental or industrial particles and nanoparticles, etc. However, it is unclear what constitutes the direct NLRP3 activator. Independently of inflammasome activation, regulates the differentiation of T helper 2 (Th2) cells and has a role in Th2 cell-dependent asthma and tumor growth (By similarity). During Th2 differentiation, required for optimal IRF4 binding to IL4 promoter and for IRF4-dependent IL4 transcription. Binds to the consensus DNA sequence 5'-GRRGGNRGAG-3'. May also participate in the transcription of IL5, IL13, GATA3, CCR3, CCR4 and MAF (By similarity).
Gene Name:
NLRP3
Uniprot ID:
Q96P20
Molecular Weight:
118171.375 Da
References
  1. Aimanianda V, Haensler J, Lacroix-Desmazes S, Kaveri SV, Bayry J: Novel cellular and molecular mechanisms of induction of immune responses by aluminum adjuvants. Trends Pharmacol Sci. 2009 Jun;30(6):287-95. doi: 10.1016/j.tips.2009.03.005. Epub 2009 May 11. [19439372 ]
General Function:
Transition metal ion binding
Specific Function:
Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis-inducing pathways such as those mediated by G(O) and JIP. Inhibits G(o) alpha ATPase activity (By similarity). Acts as a kinesin I membrane receptor, mediating the axonal transport of beta-secretase and presenilin 1. Involved in copper homeostasis/oxidative stress through copper ion reduction. In vitro, copper-metallated APP induces neuronal death directly or is potentiated through Cu(2+)-mediated low-density lipoprotein oxidation. Can regulate neurite outgrowth through binding to components of the extracellular matrix such as heparin and collagen I and IV. The splice isoforms that contain the BPTI domain possess protease inhibitor activity. Induces a AGER-dependent pathway that involves activation of p38 MAPK, resulting in internalization of amyloid-beta peptide and leading to mitochondrial dysfunction in cultured cortical neurons. Provides Cu(2+) ions for GPC1 which are required for release of nitric oxide (NO) and subsequent degradation of the heparan sulfate chains on GPC1.Beta-amyloid peptides are lipophilic metal chelators with metal-reducing activity. Bind transient metals such as copper, zinc and iron. In vitro, can reduce Cu(2+) and Fe(3+) to Cu(+) and Fe(2+), respectively. Beta-amyloid 42 is a more effective reductant than beta-amyloid 40. Beta-amyloid peptides bind to lipoproteins and apolipoproteins E and J in the CSF and to HDL particles in plasma, inhibiting metal-catalyzed oxidation of lipoproteins. Beta-APP42 may activate mononuclear phagocytes in the brain and elicit inflammatory responses. Promotes both tau aggregation and TPK II-mediated phosphorylation. Interaction with overexpressed HADH2 leads to oxidative stress and neurotoxicity. Also binds GPC1 in lipid rafts.Appicans elicit adhesion of neural cells to the extracellular matrix and may regulate neurite outgrowth in the brain.The gamma-CTF peptides as well as the caspase-cleaved peptides, including C31, are potent enhancers of neuronal apoptosis.N-APP binds TNFRSF21 triggering caspase activation and degeneration of both neuronal cell bodies (via caspase-3) and axons (via caspase-6).
Gene Name:
APP
Uniprot ID:
P05067
Molecular Weight:
86942.715 Da

From T3DB