Butyric acid
Relevant Data
Food Additives Approved in the United States:
Food Additives Approved by WHO:
General Information
Chemical name | Butyric acid |
CAS number | 107-92-6 |
COE number | 5 |
JECFA number | 87 |
Flavouring type | substances |
FL No. | 08.005 |
Mixture | No |
Purity of the named substance at least 95% unless otherwise specified | |
Reference body | JECFA |
From webgate.ec.europa.eu
Computed Descriptors
Download SDF2D Structure | |
CID | 264 |
IUPAC Name | butanoic acid |
InChI | InChI=1S/C4H8O2/c1-2-3-4(5)6/h2-3H2,1H3,(H,5,6) |
InChI Key | FERIUCNNQQJTOY-UHFFFAOYSA-N |
Canonical SMILES | CCCC(=O)O |
Molecular Formula | C4H8O2 |
Wikipedia | butyrate |
From Pubchem
Computed Properties
Property Name | Property Value |
---|---|
Molecular Weight | 88.106 |
Hydrogen Bond Donor Count | 1 |
Hydrogen Bond Acceptor Count | 2 |
Rotatable Bond Count | 2 |
Complexity | 49.5 |
CACTVS Substructure Key Fingerprint | A A A D c c B g M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G g A A C A A A C A C A g A A C C A A A A g A I A A C Q C A A A A A A A A A A A A A E A A A A A A B A A A A A A Q A A E A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = = |
Topological Polar Surface Area | 37.3 |
Monoisotopic Mass | 88.052 |
Exact Mass | 88.052 |
Compound Is Canonicalized | True |
Formal Charge | 0 |
Heavy Atom Count | 6 |
Defined Atom Stereocenter Count | 0 |
Undefined Atom Stereocenter Count | 0 |
Defined Bond Stereocenter Count | 0 |
Undefined Bond Stereocenter Count | 0 |
Isotope Atom Count | 0 |
Covalently-Bonded Unit Count | 1 |
From Pubchem
Food Additives Biosynthesis/Degradation
ADMET Predicted Profile --- Classification
Model | Result | Probability |
---|---|---|
Absorption | ||
Blood-Brain Barrier | BBB+ | 0.9572 |
Human Intestinal Absorption | HIA+ | 0.9938 |
Caco-2 Permeability | Caco2+ | 0.7456 |
P-glycoprotein Substrate | Non-substrate | 0.7590 |
P-glycoprotein Inhibitor | Non-inhibitor | 0.9554 |
Non-inhibitor | 0.9773 | |
Renal Organic Cation Transporter | Non-inhibitor | 0.9544 |
Distribution | ||
Subcellular localization | Mitochondria | 0.4990 |
Metabolism | ||
CYP450 2C9 Substrate | Non-substrate | 0.8026 |
CYP450 2D6 Substrate | Non-substrate | 0.9177 |
CYP450 3A4 Substrate | Non-substrate | 0.7582 |
CYP450 1A2 Inhibitor | Inhibitor | 0.5106 |
CYP450 2C9 Inhibitor | Non-inhibitor | 0.9345 |
CYP450 2D6 Inhibitor | Non-inhibitor | 0.9519 |
CYP450 2C19 Inhibitor | Non-inhibitor | 0.9613 |
CYP450 3A4 Inhibitor | Non-inhibitor | 0.9720 |
CYP Inhibitory Promiscuity | Low CYP Inhibitory Promiscuity | 0.9849 |
Excretion | ||
Toxicity | ||
Human Ether-a-go-go-Related Gene Inhibition | Weak inhibitor | 0.9484 |
Non-inhibitor | 0.9677 | |
AMES Toxicity | Non AMES toxic | 0.9500 |
Carcinogens | Non-carcinogens | 0.5611 |
Fish Toxicity | Low FHMT | 0.5473 |
Tetrahymena Pyriformis Toxicity | High TPT | 0.6599 |
Honey Bee Toxicity | High HBT | 0.7071 |
Biodegradation | Ready biodegradable | 0.9659 |
Acute Oral Toxicity | III | 0.8028 |
Carcinogenicity (Three-class) | Non-required | 0.6417 |
From admetSAR
ADMET Predicted Profile --- Regression
Model | Value | Unit |
---|---|---|
Absorption | ||
Aqueous solubility | -0.1358 | LogS |
Caco-2 Permeability | 1.4674 | LogPapp, cm/s |
Distribution | ||
Metabolism | ||
Excretion | ||
Toxicity | ||
Rat Acute Toxicity | 1.6755 | LD50, mol/kg |
Fish Toxicity | 2.9304 | pLC50, mg/L |
Tetrahymena Pyriformis Toxicity | -0.4451 | pIGC50, ug/L |
From admetSAR
Toxicity Profile
Route of Exposure | None |
---|---|
Mechanism of Toxicity | Butyric acid is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen. |
Metabolism | Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure. |
Toxicity Values | None |
Lethal Dose | None |
Carcinogenicity (IARC Classification) | No indication of carcinogenicity to humans (not listed by IARC). |
Minimum Risk Level | None |
Health Effects | Acute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides. |
Treatment | If the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally. |
Reference |
|
From T3DB
Taxonomic Classification
Kingdom | Organic compounds |
---|---|
Superclass | Lipids and lipid-like molecules |
Class | Fatty Acyls |
Subclass | Fatty acids and conjugates |
Intermediate Tree Nodes | Not available |
Direct Parent | Straight chain fatty acids |
Alternative Parents | |
Molecular Framework | Aliphatic acyclic compounds |
Substituents | Straight chain fatty acid - Monocarboxylic acid or derivatives - Carboxylic acid - Carboxylic acid derivative - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Carbonyl group - Aliphatic acyclic compound |
Description | This compound belongs to the class of organic compounds known as straight chain fatty acids. These are fatty acids with a straight aliphatic chain. |
From ClassyFire
Targets
- General Function:
- Transcription regulatory region sequence-specific dna binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B. Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-ARNTL/BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation.
- Gene Name:
- HDAC1
- Uniprot ID:
- Q13547
- Molecular Weight:
- 55102.615 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Transcription factor binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor complex composed of DNMT1, DMAP1, PCNA, CAF1. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation. Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A.
- Gene Name:
- HDAC2
- Uniprot ID:
- Q92769
- Molecular Weight:
- 55363.855 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Transcription factor binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression. Probably participates in the regulation of transcription through its binding to the zinc-finger transcription factor YY1; increases YY1 repression activity. Required to repress transcription of the POU1F1 transcription factor. Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation (PubMed:21444723, PubMed:23911289). Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress (PubMed:25190803).
- Gene Name:
- HDAC3
- Uniprot ID:
- O15379
- Molecular Weight:
- 48847.385 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.
- Gene Name:
- HDAC4
- Uniprot ID:
- P56524
- Molecular Weight:
- 119038.875 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Transcription factor binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.
- Gene Name:
- HDAC5
- Uniprot ID:
- Q9UQL6
- Molecular Weight:
- 121976.855 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Zinc ion binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Plays a central role in microtubule-dependent cell motility via deacetylation of tubulin. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome. Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy.
- Gene Name:
- HDAC6
- Uniprot ID:
- Q9UBN7
- Molecular Weight:
- 131418.19 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Transcription corepressor activity
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer factors such as MEF2A, MEF2B and MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors (By similarity). May be involved in Epstein-Barr virus (EBV) latency, possibly by repressing the viral BZLF1 gene. Positively regulates the transcriptional repressor activity of FOXP3 (PubMed:17360565).
- Gene Name:
- HDAC7
- Uniprot ID:
- Q8WUI4
- Molecular Weight:
- 102926.225 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Transcription factor binding
- Specific Function:
- Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription.Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter.
- Gene Name:
- HDAC9
- Uniprot ID:
- Q9UKV0
- Molecular Weight:
- 111296.29 Da
References
- Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
- General Function:
- Metal ion binding
- Specific Function:
- Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code.
- Gene Name:
- KDM4E
- Uniprot ID:
- B2RXH2
- Molecular Weight:
- 56803.925 Da
References
- Rose NR, Ng SS, Mecinovic J, Lienard BM, Bello SH, Sun Z, McDonough MA, Oppermann U, Schofield CJ: Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem. 2008 Nov 27;51(22):7053-6. doi: 10.1021/jm800936s. [18942826 ]
- General Function:
- Identical protein binding
- Specific Function:
- Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
- Gene Name:
- BCHE
- Uniprot ID:
- P06276
- Molecular Weight:
- 68417.575 Da
- General Function:
- Hydrolase activity
- Gene Name:
- cumD
- Uniprot ID:
- P96965
- Molecular Weight:
- 31489.385 Da
- General Function:
- (s)-2-haloacid dehalogenase activity
- Specific Function:
- Catalyzes the hydrolytic dehalogenation of small (S)-2-haloalkanoic acids to yield the corresponding (R)-2-hydroxyalkanoic acids. Acts on acids of short chain lengths, C(2) to C(4), with inversion of configuration at C-2.
- Uniprot ID:
- Q53464
- Molecular Weight:
- 26176.335 Da
From T3DB