Relevant Data

Food Additives Approved in the United States:

Food Additives Approved by WHO:


General Information

Chemical nameButyric acid
CAS number107-92-6
COE number5
JECFA number87
Flavouring typesubstances
FL No.08.005
MixtureNo
Purity of the named substance at least 95% unless otherwise specified
Reference bodyJECFA

From webgate.ec.europa.eu

Computed Descriptors

Download SDF
2D Structure
CID264
IUPAC Namebutanoic acid
InChIInChI=1S/C4H8O2/c1-2-3-4(5)6/h2-3H2,1H3,(H,5,6)
InChI KeyFERIUCNNQQJTOY-UHFFFAOYSA-N
Canonical SMILESCCCC(=O)O
Molecular FormulaC4H8O2
Wikipediabutyrate

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight88.106
Hydrogen Bond Donor Count1
Hydrogen Bond Acceptor Count2
Rotatable Bond Count2
Complexity49.5
CACTVS Substructure Key Fingerprint A A A D c c B g M A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A G g A A C A A A C A C A g A A C C A A A A g A I A A C Q C A A A A A A A A A A A A A E A A A A A A B A A A A A A Q A A E A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area37.3
Monoisotopic Mass88.052
Exact Mass88.052
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count6
Defined Atom Stereocenter Count0
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.9572
Human Intestinal AbsorptionHIA+0.9938
Caco-2 PermeabilityCaco2+0.7456
P-glycoprotein SubstrateNon-substrate0.7590
P-glycoprotein InhibitorNon-inhibitor0.9554
Non-inhibitor0.9773
Renal Organic Cation TransporterNon-inhibitor0.9544
Distribution
Subcellular localizationMitochondria0.4990
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8026
CYP450 2D6 SubstrateNon-substrate0.9177
CYP450 3A4 SubstrateNon-substrate0.7582
CYP450 1A2 InhibitorInhibitor0.5106
CYP450 2C9 InhibitorNon-inhibitor0.9345
CYP450 2D6 InhibitorNon-inhibitor0.9519
CYP450 2C19 InhibitorNon-inhibitor0.9613
CYP450 3A4 InhibitorNon-inhibitor0.9720
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9849
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9484
Non-inhibitor0.9677
AMES ToxicityNon AMES toxic0.9500
CarcinogensNon-carcinogens0.5611
Fish ToxicityLow FHMT0.5473
Tetrahymena Pyriformis ToxicityHigh TPT0.6599
Honey Bee ToxicityHigh HBT0.7071
BiodegradationReady biodegradable0.9659
Acute Oral ToxicityIII0.8028
Carcinogenicity (Three-class)Non-required0.6417

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility-0.1358LogS
Caco-2 Permeability1.4674LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.6755LD50, mol/kg
Fish Toxicity2.9304pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.4451pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureNone
Mechanism of ToxicityButyric acid is a cholinesterase or acetylcholinesterase (AChE) inhibitor. A cholinesterase inhibitor (or 'anticholinesterase') suppresses the action of acetylcholinesterase. Because of its essential function, chemicals that interfere with the action of acetylcholinesterase are potent neurotoxins, causing excessive salivation and eye-watering in low doses, followed by muscle spasms and ultimately death. Nerve gases and many substances used in insecticides have been shown to act by binding a serine in the active site of acetylcholine esterase, inhibiting the enzyme completely. Acetylcholine esterase breaks down the neurotransmitter acetylcholine, which is released at nerve and muscle junctions, in order to allow the muscle or organ to relax. The result of acetylcholine esterase inhibition is that acetylcholine builds up and continues to act so that any nerve impulses are continually transmitted and muscle contractions do not stop. Among the most common acetylcholinesterase inhibitors are phosphorus-based compounds, which are designed to bind to the active site of the enzyme. The structural requirements are a phosphorus atom bearing two lipophilic groups, a leaving group (such as a halide or thiocyanate), and a terminal oxygen.
MetabolismParaoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of OP exposure.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsAcute exposure to cholinesterase inhibitors can cause a cholinergic crisis characterized by severe nausea/vomiting, salivation, sweating, bradycardia, hypotension, collapse, and convulsions. Increasing muscle weakness is a possibility and may result in death if respiratory muscles are involved. Accumulation of ACh at motor nerves causes overstimulation of nicotinic expression at the neuromuscular junction. When this occurs symptoms such as muscle weakness, fatigue, muscle cramps, fasciculation, and paralysis can be seen. When there is an accumulation of ACh at autonomic ganglia this causes overstimulation of nicotinic expression in the sympathetic system. Symptoms associated with this are hypertension, and hypoglycemia. Overstimulation of nicotinic acetylcholine receptors in the central nervous system, due to accumulation of ACh, results in anxiety, headache, convulsions, ataxia, depression of respiration and circulation, tremor, general weakness, and potentially coma. When there is expression of muscarinic overstimulation due to excess acetylcholine at muscarinic acetylcholine receptors symptoms of visual disturbances, tightness in chest, wheezing due to bronchoconstriction, increased bronchial secretions, increased salivation, lacrimation, sweating, peristalsis, and urination can occur. Certain reproductive effects in fertility, growth, and development for males and females have been linked specifically to organophosphate pesticide exposure. Most of the research on reproductive effects has been conducted on farmers working with pesticides and insecticdes in rural areas. In females menstrual cycle disturbances, longer pregnancies, spontaneous abortions, stillbirths, and some developmental effects in offspring have been linked to organophosphate pesticide exposure. Prenatal exposure has been linked to impaired fetal growth and development. Neurotoxic effects have also been linked to poisoning with OP pesticides causing four neurotoxic effects in humans: cholinergic syndrome, intermediate syndrome, organophosphate-induced delayed polyneuropathy (OPIDP), and chronic organophosphate-induced neuropsychiatric disorder (COPIND). These syndromes result after acute and chronic exposure to OP pesticides.
TreatmentIf the compound has been ingested, rapid gastric lavage should be performed using 5% sodium bicarbonate. For skin contact, the skin should be washed with soap and water. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. In serious cases, atropine and/or pralidoxime should be administered. Anti-cholinergic drugs work to counteract the effects of excess acetylcholine and reactivate AChE. Atropine can be used as an antidote in conjunction with pralidoxime or other pyridinium oximes (such as trimedoxime or obidoxime), though the use of '-oximes' has been found to be of no benefit, or possibly harmful, in at least two meta-analyses. Atropine is a muscarinic antagonist, and thus blocks the action of acetylcholine peripherally.
Reference
  1. McMillan L, Butcher SK, Pongracz J, Lord JM: Opposing effects of butyrate and bile acids on apoptosis of human colon adenoma cells: differential activation of PKC and MAP kinases. Br J Cancer. 2003 Mar 10;88(5):748-53.[12618885 ]
  2. Bauer G: Induction of Epstein-Barr virus early antigens by corticosteroids: inhibition by TPA and retinoic acid. Int J Cancer. 1983 Mar 15;31(3):291-5.[6826253 ]
  3. Silwood CJ, Lynch E, Claxson AW, Grootveld MC: 1H and (13)C NMR spectroscopic analysis of human saliva. J Dent Res. 2002 Jun;81(6):422-7.[12097436 ]
  4. McIntosh GH, Noakes M, Royle PJ, Foster PR: Whole-grain rye and wheat foods and markers of bowel health in overweight middle-aged men. Am J Clin Nutr. 2003 Apr;77(4):967-74.[12663299 ]
  5. Schwiertz A, Lehmann U, Jacobasch G, Blaut M: Influence of resistant starch on the SCFA production and cell counts of butyrate-producing Eubacterium spp. in the human intestine. J Appl Microbiol. 2002;93(1):157-62.[12067385 ]
  6. Bauer G, Hofler P, Simon M: Epstein-Barr virus induction by a serum factor. Characterization of the purified factor and the mechanism of its activation. J Biol Chem. 1982 Oct 10;257(19):11411-5.[6288683 ]
  7. Jin SE, Ban E, Kim YB, Kim CK: Development of HPLC method for the determination of levosulpiride in human plasma. J Pharm Biomed Anal. 2004 Jun 29;35(4):929-36.[15193738 ]
  8. Welters CF, Heineman E, Thunnissen FB, van den Bogaard AE, Soeters PB, Baeten CG: Effect of dietary inulin supplementation on inflammation of pouch mucosa in patients with an ileal pouch-anal anastomosis. Dis Colon Rectum. 2002 May;45(5):621-7.[12004211 ]
  9. Kurita-Ochiai T, Seto S, Ochiai K: Role of cell-cell communication in inhibiting butyric acid-induced T-cell apoptosis. Infect Immun. 2004 Oct;72(10):5947-54.[15385498 ]
  10. Cruz HG, Ivanova T, Lunn ML, Stoffel M, Slesinger PA, Luscher C: Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat Neurosci. 2004 Feb;7(2):153-9. Epub 2004 Jan 25.[14745451 ]
  11. Yonemura K, Sairenji T, Hinuma Y: Inhibitory effect of 1-beta-D-arabinofuranosylthymine on synthesis of Epstein-Barr virus. Microbiol Immunol. 1981;25(6):557-63.[6268944 ]
  12. Teichert J, Tuemmers T, Achenbach H, Preiss C, Hermann R, Ruus P, Preiss R: Pharmacokinetics of alpha-lipoic acid in subjects with severe kidney damage and end-stage renal disease. J Clin Pharmacol. 2005 Mar;45(3):313-28.[15703366 ]
  13. Rephaeli A, Blank-Porat D, Tarasenko N, Entin-Meer M, Levovich I, Cutts SM, Phillips DR, Malik Z, Nudelman A: In vivo and in vitro antitumor activity of butyroyloxymethyl-diethyl phosphate (AN-7), a histone deacetylase inhibitor, in human prostate cancer. Int J Cancer. 2005 Aug 20;116(2):226-35.[15800932 ]
  14. Kurita-Ochiai T, Ochiai K, Suzuki N, Otsuka K, Fukushima K: Human gingival fibroblasts rescue butyric acid-induced T-cell apoptosis. Infect Immun. 2002 May;70(5):2361-7.[11953371 ]
  15. Jacobasch G, Jacobasch KH: [Molecular etiology of colorectal carcinogenesis, clinical manifestations and therapy]. Z Arztl Fortbild Qualitatssich. 1997 Mar;91(2):125-33.[9244653 ]
  16. Velazquez OC, Lederer HM, Rombeau JL: Butyrate and the colonocyte. Production, absorption, metabolism, and therapeutic implications. Adv Exp Med Biol. 1997;427:123-34.[9361838 ]
  17. Kawanishi M, Ito Y: Effect of short-chain fatty acids on Epstein-Barr virus early and viral capsid antigen induction in P3HR-1 cells. Cancer Lett. 1980 Dec;11(2):129-32.[6257378 ]
  18. Stein TP, Koerner B, Schluter MD, Leskiw MJ, Gaprindachvilli T, Richards EW, Cope FO, Condolucci D: Weight loss, the gut and the inflammatory response in aids patients. Cytokine. 1997 Feb;9(2):143-7.[9071566 ]
  19. Sengupta S, Muir JG, Gibson PR: Does butyrate protect from colorectal cancer? J Gastroenterol Hepatol. 2006 Jan;21(1 Pt 2):209-18.[16460475 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassLipids and lipid-like molecules
ClassFatty Acyls
SubclassFatty acids and conjugates
Intermediate Tree NodesNot available
Direct ParentStraight chain fatty acids
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsStraight chain fatty acid - Monocarboxylic acid or derivatives - Carboxylic acid - Carboxylic acid derivative - Organic oxygen compound - Organic oxide - Hydrocarbon derivative - Organooxygen compound - Carbonyl group - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as straight chain fatty acids. These are fatty acids with a straight aliphatic chain.

From ClassyFire


Targets

General Function:
Transcription regulatory region sequence-specific dna binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Deacetylates SP proteins, SP1 and SP3, and regulates their function. Component of the BRG1-RB1-HDAC1 complex, which negatively regulates the CREST-mediated transcription in resting neurons. Upon calcium stimulation, HDAC1 is released from the complex and CREBBP is recruited, which facilitates transcriptional activation. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Deacetylates 'Lys-310' in RELA and thereby inhibits the transcriptional activity of NF-kappa-B. Deacetylates NR1D2 and abrogates the effect of KAT5-mediated relieving of NR1D2 transcription repression activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. Involved in CIART-mediated transcriptional repression of the circadian transcriptional activator: CLOCK-ARNTL/BMAL1 heterodimer. Required for the transcriptional repression of circadian target genes, such as PER1, mediated by the large PER complex or CRY1 through histone deacetylation.
Gene Name:
HDAC1
Uniprot ID:
Q13547
Molecular Weight:
55102.615 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Transcription factor binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Forms transcriptional repressor complexes by associating with MAD, SIN3, YY1 and N-COR. Interacts in the late S-phase of DNA-replication with DNMT1 in the other transcriptional repressor complex composed of DNMT1, DMAP1, PCNA, CAF1. Deacetylates TSHZ3 and regulates its transcriptional repressor activity. Component of a RCOR/GFI/KDM1A/HDAC complex that suppresses, via histone deacetylase (HDAC) recruitment, a number of genes implicated in multilineage blood cell development. May be involved in the transcriptional repression of circadian target genes, such as PER1, mediated by CRY1 through histone deacetylation. Involved in MTA1-mediated transcriptional corepression of TFF1 and CDKN1A.
Gene Name:
HDAC2
Uniprot ID:
Q92769
Molecular Weight:
55363.855 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Transcription factor binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4), and some other non-histone substrates. Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Participates in the BCL6 transcriptional repressor activity by deacetylating the H3 'Lys-27' (H3K27) on enhancer elements, antagonizing EP300 acetyltransferase activity and repressing proximal gene expression. Probably participates in the regulation of transcription through its binding to the zinc-finger transcription factor YY1; increases YY1 repression activity. Required to repress transcription of the POU1F1 transcription factor. Acts as a molecular chaperone for shuttling phosphorylated NR2C1 to PML bodies for sumoylation (PubMed:21444723, PubMed:23911289). Contributes, together with XBP1 isoform 1, to the activation of NFE2L2-mediated HMOX1 transcription factor gene expression in a PI(3)K/mTORC2/Akt-dependent signaling pathway leading to endothelial cell (EC) survival under disturbed flow/oxidative stress (PubMed:25190803).
Gene Name:
HDAC3
Uniprot ID:
O15379
Molecular Weight:
48847.385 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Zinc ion binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation via its interaction with the myocyte enhancer factors such as MEF2A, MEF2C and MEF2D. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.
Gene Name:
HDAC4
Uniprot ID:
P56524
Molecular Weight:
119038.875 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Transcription factor binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.
Gene Name:
HDAC5
Uniprot ID:
Q9UQL6
Molecular Weight:
121976.855 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Zinc ion binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes (By similarity). Plays a central role in microtubule-dependent cell motility via deacetylation of tubulin. Involved in the MTA1-mediated epigenetic regulation of ESR1 expression in breast cancer.In addition to its protein deacetylase activity, plays a key role in the degradation of misfolded proteins: when misfolded proteins are too abundant to be degraded by the chaperone refolding system and the ubiquitin-proteasome, mediates the transport of misfolded proteins to a cytoplasmic juxtanuclear structure called aggresome. Probably acts as an adapter that recognizes polyubiquitinated misfolded proteins and target them to the aggresome, facilitating their clearance by autophagy.
Gene Name:
HDAC6
Uniprot ID:
Q9UBN7
Molecular Weight:
131418.19 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Transcription corepressor activity
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Histone deacetylases act via the formation of large multiprotein complexes. Involved in muscle maturation by repressing transcription of myocyte enhancer factors such as MEF2A, MEF2B and MEF2C. During muscle differentiation, it shuttles into the cytoplasm, allowing the expression of myocyte enhancer factors (By similarity). May be involved in Epstein-Barr virus (EBV) latency, possibly by repressing the viral BZLF1 gene. Positively regulates the transcriptional repressor activity of FOXP3 (PubMed:17360565).
Gene Name:
HDAC7
Uniprot ID:
Q8WUI4
Molecular Weight:
102926.225 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Transcription factor binding
Specific Function:
Responsible for the deacetylation of lysine residues on the N-terminal part of the core histones (H2A, H2B, H3 and H4). Histone deacetylation gives a tag for epigenetic repression and plays an important role in transcriptional regulation, cell cycle progression and developmental events. Represses MEF2-dependent transcription.Isoform 3 lacks active site residues and therefore is catalytically inactive. Represses MEF2-dependent transcription by recruiting HDAC1 and/or HDAC3. Seems to inhibit skeletal myogenesis and to be involved in heart development. Protects neurons from apoptosis, both by inhibiting JUN phosphorylation by MAPK10 and by repressing JUN transcription via HDAC1 recruitment to JUN promoter.
Gene Name:
HDAC9
Uniprot ID:
Q9UKV0
Molecular Weight:
111296.29 Da
References
  1. Fass DM, Shah R, Ghosh B, Hennig K, Norton S, Zhao WN, Reis SA, Klein PS, Mazitschek R, Maglathlin RL, Lewis TA, Haggarty SJ: Effect of Inhibiting Histone Deacetylase with Short-Chain Carboxylic Acids and Their Hydroxamic Acid Analogs on Vertebrate Development and Neuronal Chromatin. ACS Med Chem Lett. 2010 Oct 8;2(1):39-42. [21874153 ]
General Function:
Metal ion binding
Specific Function:
Histone demethylase that specifically demethylates 'Lys-9' of histone H3, thereby playing a central role in histone code.
Gene Name:
KDM4E
Uniprot ID:
B2RXH2
Molecular Weight:
56803.925 Da
References
  1. Rose NR, Ng SS, Mecinovic J, Lienard BM, Bello SH, Sun Z, McDonough MA, Oppermann U, Schofield CJ: Inhibitor scaffolds for 2-oxoglutarate-dependent histone lysine demethylases. J Med Chem. 2008 Nov 27;51(22):7053-6. doi: 10.1021/jm800936s. [18942826 ]
General Function:
Identical protein binding
Specific Function:
Esterase with broad substrate specificity. Contributes to the inactivation of the neurotransmitter acetylcholine. Can degrade neurotoxic organophosphate esters.
Gene Name:
BCHE
Uniprot ID:
P06276
Molecular Weight:
68417.575 Da
General Function:
Hydrolase activity
Gene Name:
cumD
Uniprot ID:
P96965
Molecular Weight:
31489.385 Da
General Function:
(s)-2-haloacid dehalogenase activity
Specific Function:
Catalyzes the hydrolytic dehalogenation of small (S)-2-haloalkanoic acids to yield the corresponding (R)-2-hydroxyalkanoic acids. Acts on acids of short chain lengths, C(2) to C(4), with inversion of configuration at C-2.
Uniprot ID:
Q53464
Molecular Weight:
26176.335 Da

From T3DB