Relevant Data

Food Additives Approved in the United States

Flavouring Substances Approved by European Union:

  • L-Cysteine [show]

General Information

Chemical Names: L-CYSTEINE
CAS number: 52-90-4
COE number: 10464
JECFA number: 1419
FEMA number: 3263
Functional Class: Flavouring Agent
FLAVOURING_AGENT

From apps.who.int


Evaluations

Evaluation year: 2004
ADI: No safety concern at current levels of intake when used as a flavouring agent
Comments: Not evaluated using the Procedure for the Safety Evaluation of Flavouring Agents; the substance is a macronutrient and a normal component of protein and, as such, human exposure through food is orders of magnitude higher than the anticipated level of exposure from use as a flavouring agent
Report: TRS 928-JECFA 63/98
Tox Monograph: FAS 54-JECFA 63/435
Specification: COMPENDIUM ADDENDUM 12/FNP 52 Add. 12/88

From apps.who.int


Computed Descriptors

Download SDF
2D Structure
CID5862
IUPAC Name(2R)-2-amino-3-sulfanylpropanoic acid
InChIInChI=1S/C3H7NO2S/c4-2(1-7)3(5)6/h2,7H,1,4H2,(H,5,6)/t2-/m0/s1
InChI KeyXUJNEKJLAYXESH-REOHCLBHSA-N
Canonical SMILESC(C(C(=O)O)N)S
Molecular FormulaC3H7NO2S
Wikipediacysteine

From Pubchem


Computed Properties

Property Name Property Value
Molecular Weight121.154
Hydrogen Bond Donor Count3
Hydrogen Bond Acceptor Count4
Rotatable Bond Count2
Complexity75.3
CACTVS Substructure Key Fingerprint A A A D c Y B C M A B A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A H g Q Q C A A A C C j F w A S A C A B A A g Q I A A C Q C A A A A A A A A A A A A I G A A A A C A A A A A A A A Q A A A E A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A = =
Topological Polar Surface Area64.3
Monoisotopic Mass121.02
Exact Mass121.02
Compound Is CanonicalizedTrue
Formal Charge0
Heavy Atom Count7
Defined Atom Stereocenter Count1
Undefined Atom Stereocenter Count0
Defined Bond Stereocenter Count0
Undefined Bond Stereocenter Count0
Isotope Atom Count0
Covalently-Bonded Unit Count1

From Pubchem


Food Additives Biosynthesis/Degradation


ADMET Predicted Profile --- Classification

Model Result Probability
Absorption
Blood-Brain BarrierBBB+0.5918
Human Intestinal AbsorptionHIA+0.9698
Caco-2 PermeabilityCaco2-0.7210
P-glycoprotein SubstrateNon-substrate0.8141
P-glycoprotein InhibitorNon-inhibitor0.9840
Non-inhibitor0.9903
Renal Organic Cation TransporterNon-inhibitor0.9462
Distribution
Subcellular localizationLysosome0.7697
Metabolism
CYP450 2C9 SubstrateNon-substrate0.8473
CYP450 2D6 SubstrateNon-substrate0.8141
CYP450 3A4 SubstrateNon-substrate0.8245
CYP450 1A2 InhibitorNon-inhibitor0.9400
CYP450 2C9 InhibitorNon-inhibitor0.9584
CYP450 2D6 InhibitorNon-inhibitor0.9665
CYP450 2C19 InhibitorNon-inhibitor0.9634
CYP450 3A4 InhibitorNon-inhibitor0.9602
CYP Inhibitory PromiscuityLow CYP Inhibitory Promiscuity0.9888
Excretion
Toxicity
Human Ether-a-go-go-Related Gene InhibitionWeak inhibitor0.9891
Non-inhibitor0.9684
AMES ToxicityAMES toxic0.9107
CarcinogensNon-carcinogens0.7998
Fish ToxicityLow FHMT0.7709
Tetrahymena Pyriformis ToxicityLow TPT0.9922
Honey Bee ToxicityLow HBT0.5092
BiodegradationReady biodegradable0.7577
Acute Oral ToxicityIII0.8014
Carcinogenicity (Three-class)Non-required0.7251

From admetSAR


ADMET Predicted Profile --- Regression

Model Value Unit
Absorption
Aqueous solubility0.1127LogS
Caco-2 Permeability0.2031LogPapp, cm/s
Distribution
Metabolism
Excretion
Toxicity
Rat Acute Toxicity1.7757LD50, mol/kg
Fish Toxicity3.0761pLC50, mg/L
Tetrahymena Pyriformis Toxicity-0.8730pIGC50, ug/L

From admetSAR


Toxicity Profile

Route of ExposureEndogenous, Ingestion, Dermal (contact)
Mechanism of ToxicityUremic toxins such as cysteine are actively transported into the kidneys via organic ion transporters (especially OAT3). Increased levels of uremic toxins can stimulate the production of reactive oxygen species. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) . Reactive oxygen species can induce several different DNA methyltransferases (DNMTs) which are involved in the silencing of a protein known as KLOTHO. KLOTHO has been identified as having important roles in anti-aging, mineral metabolism, and vitamin D metabolism. A number of studies have indicated that KLOTHO mRNA and protein levels are reduced during acute or chronic kidney diseases in response to high local levels of reactive oxygen species . Although classified as a non-essential amino acid cysteine may be essential for infants, the elderly, and individuals with certain metabolic disease or who suffer from malabsorption syndromes. Cysteine can usually be synthesized by the human body under normal physiological conditions if a sufficient quantity of methionine is available. Due to the ability of thiols to undergo redox reactions, cysteine has antioxidant properties. Cysteine's antioxidant properties are typically expressed in the tripeptide glutathione, which occurs in humans as well as other organisms. The systemic availability of oral glutathione (GSH) is negligible; so it must be biosynthesized from its constituent amino acids, cysteine, glycine, and glutamic acid. Glutamic acid and glycine are readily available in the diets of most industrialized countries, but the availability of cysteine can be the limiting substrate. Cysteine is also an important source of sulfide in human metabolism. The sulfide in iron-sulfur clusters and in nitrogenase is extracted from cysteine, which is converted to alanine in the process. In a 1994 report released by five top cigarette companies, cysteine is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Its inclusion in cigarettes could offer two benefits: Acting as an expectorant, since smoking increases mucus production in the lungs; and increasing the beneficial antioxidant glutathione (which is diminished in smokers).
MetabolismUremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. Most uremic toxins are metabolic waste products and are normally excreted in the urine or feces.
Toxicity ValuesNone
Lethal DoseNone
Carcinogenicity (IARC Classification)No indication of carcinogenicity to humans (not listed by IARC).
Minimum Risk LevelNone
Health EffectsChronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.
TreatmentKidney dialysis is usually needed to relieve the symptoms of uremic syndrome until normal kidney function can be restored.
Reference
  1. Duranton F, Cohen G, De Smet R, Rodriguez M, Jankowski J, Vanholder R, Argiles A: Normal and pathologic concentrations of uremic toxins. J Am Soc Nephrol. 2012 Jul;23(7):1258-70. doi: 10.1681/ASN.2011121175. Epub 2012 May 24.[22626821 ]
  2. Sreekumar A, Poisson LM, Rajendiran TM, Khan AP, Cao Q, Yu J, Laxman B, Mehra R, Lonigro RJ, Li Y, Nyati MK, Ahsan A, Kalyana-Sundaram S, Han B, Cao X, Byun J, Omenn GS, Ghosh D, Pennathur S, Alexander DC, Berger A, Shuster JR, Wei JT, Varambally S, Beecher C, Chinnaiyan AM: Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression. Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.[19212411 ]
  3. Schulz AM, Terne C, Jankowski V, Cohen G, Schaefer M, Boehringer F, Tepel M, Kunkel D, Zidek W, Jankowski J: Modulation of NADPH oxidase activity by known uraemic retention solutes. Eur J Clin Invest. 2014 Aug;44(8):802-11. doi: 10.1111/eci.12297.[25041433 ]
  4. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461.[22419041 ]
  5. Bulaj G, Kortemme T, Goldenberg DP: Ionization-reactivity relationships for cysteine thiols in polypeptides. Biochemistry. 1998 Jun 23;37(25):8965-72.[9636038 ]
  6. Baker DH, Czarnecki-Maulden GL: Pharmacologic role of cysteine in ameliorating or exacerbating mineral toxicities. J Nutr. 1987 Jun;117(6):1003-10.[3298579 ]
  7. Sandmann J, Schwedhelm KS, Tsikas D: Specific transport of S-nitrosocysteine in human red blood cells: Implications for formation of S-nitrosothiols and transport of NO bioactivity within the vasculature. FEBS Lett. 2005 Aug 1;579(19):4119-24.[16023102 ]
  8. Paivalainen S, Suokas M, Lahti O, Heape AM: Degraded myelin-associated glycoprotein (dMAG) formation from pure human brain myelin-associated glycoprotein (MAG) is not mediated by calpain or cathepsin L-like activities. J Neurochem. 2003 Feb;84(3):533-45.[12558973 ]
  9. Iyer S, Leonidas DD, Swaminathan GJ, Maglione D, Battisti M, Tucci M, Persico MG, Acharya KR: The crystal structure of human placenta growth factor-1 (PlGF-1), an angiogenic protein, at 2.0 A resolution. J Biol Chem. 2001 Apr 13;276(15):12153-61. Epub 2000 Nov 7.[11069911 ]
  10. Nishiya Y, Yoshida Y, Yoshimura M, Fukamachi H, Nakano Y: Homogeneous enzymatic assay for L-cysteine with betaC-S lyase. Biosci Biotechnol Biochem. 2005 Nov;69(11):2244-6.[16306712 ]
  11. Cynober LA: Plasma amino acid levels with a note on membrane transport: characteristics, regulation, and metabolic significance. Nutrition. 2002 Sep;18(9):761-6.[12297216 ]
  12. Santamaria I, Velasco G, Cazorla M, Fueyo A, Campo E, Lopez-Otin C: Cathepsin L2, a novel human cysteine proteinase produced by breast and colorectal carcinomas. Cancer Res. 1998 Apr 15;58(8):1624-30.[9563472 ]
  13. Eriksson A, Tohonen V, Wedell A, Nordqvist K: Isolation of the human testatin gene and analysis in patients with abnormal gonadal development. Mol Hum Reprod. 2002 Jan;8(1):8-15.[11756564 ]
  14. Kaminska J, Wisniewska A, Koscielak J: Chemical modifications of alpha1,6-fucosyltransferase define amino acid residues of catalytic importance. Biochimie. 2003 Mar-Apr;85(3-4):303-10.[12770769 ]
  15. Li Y, Gamper N, Shapiro MS: Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. J Neurosci. 2004 Jun 2;24(22):5079-90.[15175377 ]
  16. Lindzen M, Gottschalk KE, Fuzesi M, Garty H, Karlish SJ: Structural interactions between FXYD proteins and Na+,K+-ATPase: alpha/beta/FXYD subunit stoichiometry and cross-linking. J Biol Chem. 2006 Mar 3;281(9):5947-55. Epub 2005 Dec 21.[16373350 ]
  17. Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW: SopB, a protein required for virulence of Salmonella dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14057-9.[9826652 ]
  18. Kersemans V, Cornelissen B, Kersemans K, Bauwens M, Achten E, Dierckx RA, Mertens J, Slegers G: In vivo characterization of 123/125I-2-iodo-L-phenylalanine in an R1M rhabdomyosarcoma athymic mouse model as a potential tumor tracer for SPECT. J Nucl Med. 2005 Mar;46(3):532-9.[15750170 ]
  19. Foss CA, Mease RC, Fan H, Wang Y, Ravert HT, Dannals RF, Olszewski RT, Heston WD, Kozikowski AP, Pomper MG: Radiolabeled small-molecule ligands for prostate-specific membrane antigen: in vivo imaging in experimental models of prostate cancer. Clin Cancer Res. 2005 Jun 1;11(11):4022-8.[15930336 ]
  20. Nicholson JK, O'Flynn MP, Sadler PJ, Macleod AF, Juul SM, Sonksen PH: Proton-nuclear-magnetic-resonance studies of serum, plasma and urine from fasting normal and diabetic subjects. Biochem J. 1984 Jan 15;217(2):365-75.[6696735 ]
  21. Kozaki K, Miyaishi O, Asai N, Iida K, Sakata K, Hayashi M, Nishida T, Matsuyama M, Shimizu S, Kaneda T, et al.: Tissue distribution of ERp61 and association of its increased expression with IgG production in hybridoma cells. Exp Cell Res. 1994 Aug;213(2):348-58.[8050492 ]
  22. Amberger VR, Hensel T, Ogata N, Schwab ME: Spreading and migration of human glioma and rat C6 cells on central nervous system myelin in vitro is correlated with tumor malignancy and involves a metalloproteolytic activity. Cancer Res. 1998 Jan 1;58(1):149-58.[9426071 ]
  23. Zhang JT, Li QX, Wang D, Zhu ZL, Yang YH, Cui DS, Wang MW, Sun XF: Up-regulation of PINCH in the stroma of oral squamous cell carcinoma predicts nodal metastasis. Oncol Rep. 2005 Dec;14(6):1519-22.[16273248 ]
  24. Taveau M, Bourg N, Sillon G, Roudaut C, Bartoli M, Richard I: Calpain 3 is activated through autolysis within the active site and lyses sarcomeric and sarcolemmal components. Mol Cell Biol. 2003 Dec;23(24):9127-35.[14645524 ]
  25. Yu FH, Westenbroek RE, Silos-Santiago I, McCormick KA, Lawson D, Ge P, Ferriera H, Lilly J, DiStefano PS, Catterall WA, Scheuer T, Curtis R: Sodium channel beta4, a new disulfide-linked auxiliary subunit with similarity to beta2. J Neurosci. 2003 Aug 20;23(20):7577-85.[12930796 ]
  26. Naisbitt DJ, Vilar FJ, Stalford AC, Wilkins EG, Pirmohamed M, Park BK: Plasma cysteine deficiency and decreased reduction of nitrososulfamethoxazole with HIV infection. AIDS Res Hum Retroviruses. 2000 Dec 10;16(18):1929-38.[11153075 ]

From T3DB


Taxonomic Classification

KingdomOrganic compounds
SuperclassOrganic acids and derivatives
ClassCarboxylic acids and derivatives
SubclassAmino acids, peptides, and analogues
Intermediate Tree NodesAmino acids and derivatives - Alpha amino acids and derivatives
Direct ParentCysteine and derivatives
Alternative Parents
Molecular FrameworkAliphatic acyclic compounds
SubstituentsCysteine or derivatives - Alpha-amino acid - L-alpha-amino acid - Amino acid - Alkylthiol - Carboxylic acid - Monocarboxylic acid or derivatives - Organic oxygen compound - Primary amine - Organosulfur compound - Organooxygen compound - Organonitrogen compound - Organic nitrogen compound - Primary aliphatic amine - Carbonyl group - Amine - Hydrocarbon derivative - Organopnictogen compound - Organic oxide - Aliphatic acyclic compound
DescriptionThis compound belongs to the class of organic compounds known as cysteine and derivatives. These are compounds containing cysteine or a derivative thereof resulting from reaction of cysteine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom.

From ClassyFire


Targets

General Function:
Iron ion binding
Gene Name:
CDO-1
Uniprot ID:
Q16857
Molecular Weight:
6589.415 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Sulfinoalanine decarboxylase activity
Gene Name:
CSAD
Uniprot ID:
Q9Y600
Molecular Weight:
55022.79 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Ferrous iron binding
Specific Function:
Initiates several important metabolic pathways related to pyruvate and several sulfurate compounds including sulfate, hypotaurine and taurine. Critical regulator of cellular cysteine concentrations. Has an important role in maintaining the hepatic concentation of intracellular free cysteine within a proper narrow range.
Gene Name:
CDO1
Uniprot ID:
Q16878
Molecular Weight:
22971.745 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration of target proteins: sulfhydration consists of converting -SH groups into -SSH on specific cysteine residues of target proteins such as GAPDH, PTPN1 and NF-kappa-B subunit RELA, thereby regulating their function.
Gene Name:
CTH
Uniprot ID:
P32929
Molecular Weight:
44507.64 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Trna binding
Gene Name:
CARS
Uniprot ID:
P49589
Molecular Weight:
85472.665 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Metal ion binding
Gene Name:
CARS2
Uniprot ID:
Q9HA77
Molecular Weight:
62223.345 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Thiamine uptake transmembrane transporter activity
Specific Function:
Mediates high affinity thiamine uptake, propably via a proton anti-port mechanism. Has no folate transport activity.
Gene Name:
SLC19A3
Uniprot ID:
Q9BZV2
Molecular Weight:
55664.265 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein kinase binding
Specific Function:
Motor protein required for establishing a bipolar spindle. Blocking of KIF11 prevents centrosome migration and arrest cells in mitosis with monoastral microtubule arrays.
Gene Name:
KIF11
Uniprot ID:
P52732
Molecular Weight:
119158.025 Da
References
  1. Ogo N, Oishi S, Matsuno K, Sawada J, Fujii N, Asai A: Synthesis and biological evaluation of L-cysteine derivatives as mitotic kinesin Eg5 inhibitors. Bioorg Med Chem Lett. 2007 Jul 15;17(14):3921-4. Epub 2007 May 3. [17524640 ]
General Function:
Methyltransferase activity
Specific Function:
Involved in the cellular defense against the biological effects of O6-methylguanine (O6-MeG) in DNA. Repairs alkylated guanine in DNA by stoichiometrically transferring the alkyl group at the O-6 position to a cysteine residue in the enzyme. This is a suicide reaction: the enzyme is irreversibly inactivated.
Gene Name:
MGMT
Uniprot ID:
P16455
Molecular Weight:
21645.83 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Ubiquitin protein ligase binding
Specific Function:
Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L-homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine (PubMed:23981774, PubMed:20506325, PubMed:23974653). Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons (By similarity).
Gene Name:
CBS
Uniprot ID:
P35520
Molecular Weight:
60586.05 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe-S) clusters. May be involved in the biosynthesis of molybdenum cofactor.
Gene Name:
NFS1
Uniprot ID:
Q9Y697
Molecular Weight:
50195.21 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Pyridoxal phosphate binding
Specific Function:
Biosynthesis of L-glutamate from L-aspartate or L-cysteine. Important regulator of levels of glutamate, the major excitatory neurotransmitter of the vertebrate central nervous system. Acts as a scavenger of glutamate in brain neuroprotection. The aspartate aminotransferase activity is involved in hepatic glucose synthesis during development and in adipocyte glyceroneogenesis. Using L-cysteine as substrate, regulates levels of mercaptopyruvate, an important source of hydrogen sulfide. Mercaptopyruvate is converted into H(2)S via the action of 3-mercaptopyruvate sulfurtransferase (3MST). Hydrogen sulfide is an important synaptic modulator and neuroprotectant in the brain.
Gene Name:
GOT1
Uniprot ID:
P17174
Molecular Weight:
46247.14 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Magnesium ion binding
Gene Name:
GCLC
Uniprot ID:
P48506
Molecular Weight:
72765.14 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Cystine:glutamate antiporter activity
Specific Function:
Sodium-independent, high-affinity exchange of anionic amino acids with high specificity for anionic form of cystine and glutamate.
Gene Name:
SLC7A11
Uniprot ID:
Q9UPY5
Molecular Weight:
55422.44 Da
References
  1. Patel SA, Rajale T, O'Brien E, Burkhart DJ, Nelson JK, Twamley B, Blumenfeld A, Szabon-Watola MI, Gerdes JM, Bridges RJ, Natale NR: Isoxazole analogues bind the system xc- transporter: structure-activity relationship and pharmacophore model. Bioorg Med Chem. 2010 Jan 1;18(1):202-13. doi: 10.1016/j.bmc.2009.11.001. Epub 2009 Nov 10. [19932968 ]
General Function:
Glutamate-cysteine ligase catalytic subunit binding
Gene Name:
GCLM
Uniprot ID:
P48507
Molecular Weight:
30726.745 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Protein homodimerization activity
Gene Name:
GSS
Uniprot ID:
P48637
Molecular Weight:
52384.325 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
L-proline transmembrane transporter activity
Specific Function:
Neutral amino acid/proton symporter. Has a pH-dependent electrogenic transport activity for small amino acids such as glycine, alanine and proline. Besides small apolar L-amino acids, it also recognize their D-enantiomers and selected amino acid derivatives such as gamma-aminobutyric acid (By similarity).
Gene Name:
SLC36A1
Uniprot ID:
Q7Z2H8
Molecular Weight:
53075.045 Da
References
  1. Thondorf I, Voigt V, Schafer S, Gebauer S, Zebisch K, Laug L, Brandsch M: Three-dimensional quantitative structure-activity relationship analyses of substrates of the human proton-coupled amino acid transporter 1 (hPAT1). Bioorg Med Chem. 2011 Nov 1;19(21):6409-18. doi: 10.1016/j.bmc.2011.08.058. Epub 2011 Sep 5. [21955456 ]
General Function:
Vitamin d binding
Specific Function:
May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity).The Klotho peptide generated by cleavage of the membrane-bound isoform may be an anti-aging circulating hormone which would extend life span by inhibiting insulin/IGF1 signaling.
Gene Name:
KL
Uniprot ID:
Q9UEF7
Molecular Weight:
116179.815 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Superoxide-generating nadph oxidase activity
Specific Function:
Constitutive NADPH oxidase which generates superoxide intracellularly upon formation of a complex with CYBA/p22phox. Regulates signaling cascades probably through phosphatases inhibition. May function as an oxygen sensor regulating the KCNK3/TASK-1 potassium channel and HIF1A activity. May regulate insulin signaling cascade. May play a role in apoptosis, bone resorption and lipolysaccharide-mediated activation of NFKB. May produce superoxide in the nucleus and play a role in regulating gene expression upon cell stimulation. Isoform 3 is not functional. Isoform 5 and isoform 6 display reduced activity.Isoform 4: Involved in redox signaling in vascular cells. Constitutively and NADPH-dependently generates reactive oxygen species (ROS). Modulates the nuclear activation of ERK1/2 and the ELK1 transcription factor, and is capable of inducing nuclear DNA damage. Displays an increased activity relative to isoform 1.
Gene Name:
NOX4
Uniprot ID:
Q9NPH5
Molecular Weight:
66930.995 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]
General Function:
Sodium-independent organic anion transmembrane transporter activity
Specific Function:
Plays an important role in the excretion/detoxification of endogenous and exogenous organic anions, especially from the brain and kidney. Involved in the transport basolateral of steviol, fexofenadine. Transports benzylpenicillin (PCG), estrone-3-sulfate (E1S), cimetidine (CMD), 2,4-dichloro-phenoxyacetate (2,4-D), p-amino-hippurate (PAH), acyclovir (ACV) and ochratoxin (OTA).
Gene Name:
SLC22A8
Uniprot ID:
Q8TCC7
Molecular Weight:
59855.585 Da
References
  1. Young GH, Wu VC: KLOTHO methylation is linked to uremic toxins and chronic kidney disease. Kidney Int. 2012 Apr;81(7):611-2. doi: 10.1038/ki.2011.461. [22419041 ]

From T3DB