Heat shock-related 70 kDa protein 2


NameHeat shock-related 70 kDa protein 2
Synonyms
  • Heat shock 70 kDa protein 2
Gene NameHSPA2
OrganismHuman
Amino acid sequence
>lcl|BSEQ0049749|Heat shock-related 70 kDa protein 2
MSARGPAIGIDLGTTYSCVGVFQHGKVEIIANDQGNRTTPSYVAFTDTERLIGDAAKNQV
AMNPTNTIFDAKRLIGRKFEDATVQSDMKHWPFRVVSEGGKPKVQVEYKGETKTFFPEEI
SSMVLTKMKEIAEAYLGGKVHSAVITVPAYFNDSQRQATKDAGTITGLNVLRIINEPTAA
AIAYGLDKKGCAGGEKNVLIFDLGGGTFDVSILTIEDGIFEVKSTAGDTHLGGEDFDNRM
VSHLAEEFKRKHKKDIGPNKRAVRRLRTACERAKRTLSSSTQASIEIDSLYEGVDFYTSI
TRARFEELNADLFRGTLEPVEKALRDAKLDKGQIQEIVLVGGSTRIPKIQKLLQDFFNGK
ELNKSINPDEAVAYGAAVQAAILIGDKSENVQDLLLLDVTPLSLGIETAGGVMTPLIKRN
TTIPTKQTQTFTTYSDNQSSVLVQVYEGERAMTKDNNLLGKFDLTGIPPAPRGVPQIEVT
FDIDANGILNVTAADKSTGKENKITITNDKGRLSKDDIDRMVQEAERYKSEDEANRDRVA
AKNALESYTYNIKQTVEDEKLRGKISEQDKNKILDKCQEVINWLDRNQMAEKDEYEHKQK
ELERVCNPIISKLYQGGPGGGSGGGGSGASGGPTIEEVD
Number of residuesNone
Molecular Weight70020.43
Theoretical pINone
GO Classification
Functions
  • ATP binding
  • unfolded protein binding
  • enzyme binding
  • disordered domain specific binding
Processes
  • protein refolding
  • spermatid development
  • response to unfolded protein
  • male meiotic nuclear division
  • negative regulation of inclusion body assembly
  • response to heat
  • spermatogenesis
  • response to cold
Components
  • membrane
  • nucleus
  • meiotic spindle
  • CatSper complex
  • cytosol
  • extracellular exosome
  • blood microparticle
General FunctionMolecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP release, mediated by co-chaperones. The affinity for polypeptides is regulated by its nucleotide bound state. In the ATP-bound form, it has a low affinity for substrate proteins. However, upon hydrolysis of the ATP to ADP, it undergoes a conformational change that increases its affinity for substrate proteins. It goes through repeated cycles of ATP hydrolysis and nucleotide exchange, which permits cycles of substrate binding and release (PubMed:26865365). Plays a role in spermatogenesis. In association with SHCBP1L may participate in the maintenance of spindle integrity during meiosis in male germ cells (By similarity).
Specific FunctionAtp binding
Transmembrane Regions
GenBank Protein ID
UniProtKB IDP54652
UniProtKB Entry Name
Cellular LocationCytoplasm
Gene sequence
>lcl|BSEQ0049750|Heat shock-related 70 kDa protein 2 (HSPA2)
ATGTCTGCCCGTGGCCCGGCTATCGGCATCGACCTGGGCACCACCTATTCGTGCGTCGGG
GTCTTCCAACATGGCAAGGTGGAGATCATCGCCAACGACCAGGGCAATCGCACCACCCCC
AGCTACGTGGCCTTCACGGACACCGAGCGCCTCATCGGCGACGCCGCCAAGAACCAGGTG
GCCATGAACCCCACCAACACCATCTTCGACGCCAAGAGGCTGATTGGACGGAAATTCGAG
GATGCCACAGTGCAGTCGGATATGAAACACTGGCCGTTCCGGGTGGTGAGCGAGGGAGGC
AAGCCCAAAGTGCAAGTAGAGTACAAGGGGGAGACCAAGACCTTCTTCCCAGAGGAGATA
TCCTCCATGGTCCTCACGAAGATGAAGGAGATCGCGGAAGCCTACCTGGGGGGCAAGGTG
CACAGCGCGGTCATAACGGTCCCGGCCTATTTCAACGACTCGCAGCGCCAGGCCACCAAG
GACGCAGGCACCATCACGGGGCTCAATGTGCTGCGCATCATCAACGAGCCCACGGCGGCG
GCCATCGCCTACGGCCTGGACAAGAAGGGCTGCGCGGGCGGCGAGAAGAACGTGCTCATC
TTTGACCTGGGCGGTGGCACTTTCGACGTGTCCATCCTGACCATCGAGGATGGCATCTTC
GAGGTGAAGTCCACGGCCGGCGACACCCACCTGGGCGGTGAGGACTTCGACAACCGCATG
GTGAGCCACCTGGCGGAGGAGTTCAAGCGCAAGCACAAGAAGGACATTGGGCCCAACAAG
CGCGCCGTGAGGCGGCTGCGCACCGCTTGCGAGCGCGCCAAGCGCACCCTGAGCTCGTCC
ACGCAGGCGAGCATCGAGATCGACTCGCTCTACGAGGGCGTGGACTTCTATACGTCCATC
ACGCGCGCCCGCTTCGAGGAGCTCAATGCCGACCTCTTTCGCGGGACCCTGGAGCCGGTG
GAGAAGGCGCTGCGCGACGCCAAGCTGGACAAGGGCCAGATCCAGGAGATCGTGCTGGTG
GGCGGCTCCACTCGTATCCCCAAGATCCAGAAGCTGCTGCAGGATTTCTTCAACGGCAAG
GAGCTGAACAAGAGCATCAACCCCGACGAGGCGGTGGCCTATGGCGCCGCGGTGCAGGCG
GCCATCCTCATCGGCGACAAATCAGAGAATGTGCAGGACCTGCTGCTACTCGACGTGACC
CCGTTGTCGCTGGGCATCGAGACAGCTGGCGGTGTCATGACCCCACTCATCAAGAGGAAC
ACCACGATCCCCACCAAGCAGACGCAGACCTTCACCACCTACTCGGACAACCAGAGCAGC
GTACTGGTGCAGGTATACGAGGGCGAACGGGCCATGACCAAGGACAATAACCTGCTGGGC
AAGTTCGACCTGACCGGGATTCCCCCTGCGCCTCGCGGGGTCCCCCAAATCGAGGTTACC
TTCGACATTGACGCCAATGGCATCCTTAACGTTACCGCCGCCGACAAGAGCACCGGTAAG
GAAAACAAAATCACCATCACCAATGACAAAGGTCGTCTGAGCAAGGACGACATTGACCGG
ATGGTGCAGGAGGCGGAGCGGTACAAATCGGAAGATGAGGCGAATCGCGACCGAGTCGCG
GCCAAAAACGCCCTGGAGTCCTATACCTACAACATCAAGCAGACGGTGGAAGACGAGAAA
CTGAGGGGCAAGATTAGCGAGCAGGACAAAAACAAGATCCTCGACAAGTGTCAGGAGGTG
ATCAACTGGCTCGACCGAAACCAGATGGCAGAGAAAGATGAGTATGAACACAAGCAGAAA
GAGCTCGAAAGAGTTTGCAACCCCATCATCAGCAAACTTTACCAAGGTGGTCCTGGCGGC
GGCAGCGGCGGCGGCGGTTCAGGAGCCTCCGGGGGACCCACCATCGAAGAAGTGGACTAA
GenBank Gene ID
GeneCard IDNone
GenAtlas ID
HGNC ID
Chromosome Location14
Locus14q23.3
References
  1. Bonnycastle LL, Yu CE, Hunt CR, Trask BJ, Clancy KP, Weber JL, Patterson D, Schellenberg GD: Cloning, sequencing, and mapping of the human chromosome 14 heat shock protein gene (HSPA2). Genomics. 1994 Sep 1;23(1):85-93. [7829106 ]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [15489334 ]
  3. Roux AF, Nguyen VT, Squire JA, Cox DW: A heat shock gene at 14q22: mapping and expression. Hum Mol Genet. 1994 Oct;3(10):1819-22. [7849706 ]
  4. Jarczowski F, Fischer G, Edlich F: FKBP36 forms complexes with clathrin and Hsp72 in spermatocytes. Biochemistry. 2008 Jul 1;47(26):6946-52. doi: 10.1021/bi8001506. Epub 2008 Jun 5. [18529014 ]
  5. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [21269460 ]
  6. Jakobsson ME, Moen A, Bousset L, Egge-Jacobsen W, Kernstock S, Melki R, Falnes PO: Identification and characterization of a novel human methyltransferase modulating Hsp70 protein function through lysine methylation. J Biol Chem. 2013 Sep 27;288(39):27752-63. doi: 10.1074/jbc.M113.483248. Epub 2013 Aug 6. [23921388 ]
  7. Radons J: The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones. 2016 May;21(3):379-404. doi: 10.1007/s12192-016-0676-6. Epub 2016 Feb 10. [26865365 ]
  8. Wisniewska M, Karlberg T, Lehtio L, Johansson I, Kotenyova T, Moche M, Schuler H: Crystal structures of the ATPase domains of four human Hsp70 isoforms: HSPA1L/Hsp70-hom, HSPA2/Hsp70-2, HSPA6/Hsp70B', and HSPA5/BiP/GRP78. PLoS One. 2010 Jan 11;5(1):e8625. doi: 10.1371/journal.pone.0008625. [20072699 ]

From www.t3db.ca