Enzyme

Download
EC Tree
     1. Oxidoreductases
        1.1 Acting on the CH-OH group of donors
            1.1.1 With NAD+ or NADP+ as acceptor
ID:1.1.1.359
Description:Aldose 1-dehydrogenase (NAD(P)(+)).
Cath: 3.40.50.720; 3.90.180.10;

3D structure

Click one PDB to see exact 3D structure provided by NGL.

Note: Use your mouse to drag, rotate, and zoom in and out of the structure. Mouse-over to identify atoms and bonds. Mouse controls documentation.

References

External Links

UniProtKB Enzyme Link: UniProtKB 1.1.1.359
BRENDA Enzyme Link: BRENDA 1.1.1.359
KEGG Enzyme Link: KEGG1.1.1.359
BioCyc Enzyme Link: BioCyc 1.1.1.359
ExPASy Enzyme Link: ExPASy1.1.1.359
EC2PDB Enzyme Link: EC2PDB 1.1.1.359
ExplorEnz Enzyme Link: ExplorEnz 1.1.1.359
PRIAM enzyme-specific profiles Link: PRIAM 1.1.1.359
IntEnz Enzyme Link: IntEnz 1.1.1.359
MEDLINE Enzyme Link: MEDLINE 1.1.1.359
MSA:

1.1.1.359;

Phylogenetic Tree:

1.1.1.359;

Uniprot:
M-CSA:
RHEA:13861 D-xylose + NAD(+) = D-xylono-1,5-lactone + H(+) + NADH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

RHEA:14293 D-glucose + NAD(+) = D-glucono-1,5-lactone + H(+) + NADH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase.Siebers B, Wendisch VF, Hensel R1997 Aug9238103
Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei: enzyme purification, characterisation and N-terminal sequence.Bonete MJ, Pire C, LLorca FI, Camacho ML1996 Apr 18925901
Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum.Bright JR, Byrom D, Danson MJ, Hough DW, Towner P1993 Feb 18436115
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V1986 Nov 13827812
Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW1989 Aug 12803257
Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase.Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ2003 Sep 512824170
Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family.Pire C, Esclapez J, Ferrer J, Bonete MJ2001 Jun 2511425479

RHEA:14405 D-glucose + NADP(+) = D-glucono-1,5-lactone + H(+) + NADPH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Carbohydrate metabolism in Thermoproteus tenax: in vivo utilization of the non-phosphorylative Entner-Doudoroff pathway and characterization of its first enzyme, glucose dehydrogenase.Siebers B, Wendisch VF, Hensel R1997 Aug9238103
Glucose dehydrogenase from the halophilic Archaeon Haloferax mediterranei: enzyme purification, characterisation and N-terminal sequence.Bonete MJ, Pire C, LLorca FI, Camacho ML1996 Apr 18925901
Cloning, sequencing and expression of the gene encoding glucose dehydrogenase from the thermophilic archaeon Thermoplasma acidophilum.Bright JR, Byrom D, Danson MJ, Hough DW, Towner P1993 Feb 18436115
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V1986 Nov 13827812
Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW1989 Aug 12803257
The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL2006 May 2616556607
Properties of the recombinant glucose/galactose dehydrogenase from the extreme thermoacidophile, Picrophilus torridus.Angelov A, Fütterer O, Valerius O, Braus GH, Liebl W2005 Feb15691337
Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase.Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ2003 Sep 512824170
Heterologous overexpression of glucose dehydrogenase from the halophilic archaeon Haloferax mediterranei, an enzyme of the medium chain dehydrogenase/reductase family.Pire C, Esclapez J, Ferrer J, Bonete MJ2001 Jun 2511425479

RHEA:15917 an aldopyranose + NAD(+) = aldono-1,5-lactone + H(+) + NADH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Antiviral therapy in AIDS. Clinical pharmacological properties and therapeutic experience to date.Sandström EG, Kaplan JC1987 Sep2824170
An additional glucose dehydrogenase from Sulfolobus solfataricus: fine-tuning of sugar degradation?Haferkamp P, Kutschki S, Treichel J, Hemeda H, Sewczyk K, Hoffmann D, Zaparty M, Siebers B2011 Jan21265750
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V1986 Nov 13827812
Purification and characterization of glucose dehydrogenase from the thermoacidophilic archaebacterium Thermoplasma acidophilum.Smith LD, Budgen N, Bungard SJ, Danson MJ, Hough DW1989 Aug 12803257

RHEA:17925 L-arabinofuranose + NAD(+) = H(+) + L-arabinono-1,4-lactone + NADH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase.Johnsen U, Sutter JM, Zaiß H, Schönheit P2013 Nov23949136
Cloning, expression, and characterization of bacterial L-arabinose 1-dehydrogenase involved in an alternative pathway of L-arabinose metabolism.Watanabe S, Kodaki T, Makino K2006 Feb 316326697
The oxidation of L-arabinose by Pseudomonas saccharophila.WEIMBERG R, DOUDOROFF M1955 Dec13271422

RHEA:18625 D-galactose + NADP(+) = D-galactono-1,5-lactone + H(+) + NADPH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Some physical properties of three sugar dehydrogenases from a pseudomonad.Cline AL, Hu AS1965 Nov5845849
Enzymatic characterization and comparison of three sugar dehydrogenases from a pseudomonad.Cline AL, Hu AS1965 Nov5845848
The isolation of three sugar dehydrogenases from a psuedomonad.Cline AL, Hu AS1965 Nov5845847
[Degradation of deoxysurgars by bacterial enzymes. V. Purification and characterization of an NADP-dependent abequose dehydrogenase from Pseudomonas putida].Schiwara HW, Domagk GF1968 Oct4387016

RHEA:22000 D-xylose + NADP(+) = D-xylono-1,5-lactone + H(+) + NADPH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Evidence of a plasmid-encoded oxidative xylose-catabolic pathway in Arthrobacter nicotinovorans pAO1.Mihasan M, Stefan M, Hritcu L, Artenie V, Brandsch R2013 Jan23063486
D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.Johnsen U, Dambeck M, Zaiss H, Fuhrer T, Soppa J, Sauer U, Schönheit P2009 Oct 219584053

RHEA:36587 an aldopyranose + NADP(+) = aldono-1,5-lactone + H(+) + NADPH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V1986 Nov 13827812
The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL2006 May 2616556607

RHEA:42392 D-galactose + NAD(+) = D-galactono-1,5-lactone + H(+) + NADH
RULE(radius=1) [*:1]-[CH;+0:2](-[*:3])-[OH;+0:4].[*:5]-[n+;H0:6]1:[cH;+0:7]:[cH;+0:8]:[cH;+0:9]:[c;H0;+0:10](-[*:11]):[cH;+0:12]:1>>[*:1]-[C;H0;+0:2](-[*:3])=[O;H0;+0:4].[*:5]-[N;H0;+0:6]1-[CH;+0:7]=[CH;+0:8]-[CH2;+0:9]-[C;H0;+0:10](-[*:11])=[CH;+0:12]-1
Reaction
Core-to-Core More
Core-to-Core More

References

TitleAuthorsDatePubMed ID
Glucose dehydrogenase from the thermoacidophilic archaebacterium Sulfolobus solfataricus.Giardina P, de Biasi MG, de Rosa M, Gambacorta A, Buonocore V1986 Nov 13827812
The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus.Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL2006 May 2616556607
Metabolic pathway promiscuity in the archaeon Sulfolobus solfataricus revealed by studies on glucose dehydrogenase and 2-keto-3-deoxygluconate aldolase.Lamble HJ, Heyer NI, Bull SD, Hough DW, Danson MJ2003 Sep 512824170